Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 1.329 IF 1.329
  • IF 5-year<br/> value: 1.394 IF 5-year
    1.394
  • CiteScore<br/> value: 1.27 CiteScore
    1.27
  • SNIP value: 0.903 SNIP 0.903
  • SJR value: 0.709 SJR 0.709
  • IPP value: 1.455 IPP 1.455
  • h5-index value: 20 h5-index 20
Nonlin. Processes Geophys., 13, 1-7, 2006
http://www.nonlin-processes-geophys.net/13/1/2006/
doi:10.5194/npg-13-1-2006
© Author(s) 2006. This work is licensed under the
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
 
16 Jan 2006
Travelling ionospheric disturbance over California mid 2000
M. Hawarey Purdue University, West Lafayette, Indiana, USA
Abstract. In this paper, the GPS data collected by more than 130 permanent GPS stations that belong to the Southern California Integrated GPS Network (SCIGN) around the launch of a Minuteman-II missile on 8 July 2000 (UTC) is processed to reveal traveling ionospheric disturbance (TID) all over the network on average 15 min after the launch. This TID was initially perceived to be excited by the launch itself, but this conclusion is challenged by the propagation direction. This is because this TID seems to travel towards the air force base from where the launch took place, not far away from it. This challenge is based on the assumption that TID is occurring at one single ionospheric altitude. While the nature of ionosphere supports such horizontally-guided propagation, multi-altitude ionospheric pierce points are hypothesized, which would support the suggestion that detected TID is excited by the missile launch itself, despite the apparent reverse direction of propagation. The overall analysis rules out any extra-terrestrial sources like solar flares, or seismic sources like earthquakes, which confirms the conclusion of TID excitation by the launch. There is apparent coherence of the TID for about 45 min and the propagation speed of TID within the layer of ionosphere is calculated to be approximately equal to 1230 m/s. While the usual assumption for TID is that they occur around an altitude of 350 km, such sound speed can only occur at much higher altitudes. Further research is recommended to accurately pinpoint the ionospheric pierce points and develop an algorithm to locate the source of TID in case it is totally unknown.

Citation: Hawarey, M.: Travelling ionospheric disturbance over California mid 2000, Nonlin. Processes Geophys., 13, 1-7, doi:10.5194/npg-13-1-2006, 2006.
Publications Copernicus
Download
Share