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Abstract. In this study, the statistical properties of a range
of measurements are compared with those of their surrogate
time series. Seven different records are studied, amongst oth-
ers, historical time series of mean daily temperature, daily
rain sums and runoff from two rivers, and cloud measure-
ments. Seven different algorithms are used to generate the
surrogate time series. The best-known method is the iter-
ative amplitude adjusted Fourier transform (IAAFT) algo-
rithm, which is able to reproduce the measured distribution
as well as the power spectrum. Using this setup, the measure-
ments and their surrogates are compared with respect to their
power spectrum, increment distribution, structure functions,
annual percentiles and return values. It is found that the sur-
rogates that reproduce the power spectrum and the distribu-
tion of the measurements are able to closely match the incre-
ment distributions and the structure functions of the measure-
ments, but this often does not hold for surrogates that only
mimic the power spectrum of the measurement. However,
even the best performing surrogates do not have asymmetric
increment distributions, i.e., they cannot reproduce nonlinear
dynamical processes that are asymmetric in time. Further-
more, we have found deviations of the structure functions on
small scales.

1 Introduction

Part of the beauty of nature lies in its mix of predictability
and surprise. Such a pattern challenges us to discover regu-
larities. This beauty is found in the structure of clouds, the
cycles and the novelty of the weather, the deltas of rivers and
mountain ranges. What the mentioned complex geophysical
systems have in common, is their variability on a large range
of temporal and spatial scales.
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As a full sampling of the entire field over all scales is of-
ten infeasible, statistical generation of geophysical fields is
frequently needed. For their statistical description, one still
needs measurements on a range of scales, but a much smaller
sample is often sufficient. Such statistical fields can be used
to study and parameterise processes which depend on struc-
ture, such as radiative transfer (Scheirer and Macke, 2001;
Pincus et al., 2005) or groundwater flow (Molz et al., 2004).
Statistical fields or time series can also be necessary when
few or no similar measurements are available, or because
multiple records cannot be measured, such as for solar ac-
tivity or runoff records of large rivers. Furthermore, inter-
esting geophysical structures with known (statistical) prop-
erties are needed to test various algorithms used in the geo-
sciences, e.g. analysis and error-detection algorithms. More-
over, such fields and time series can be used for nonlinearity
testing (Schreiber and Schmitz, 1996), estimation of confi-
dence intervals within a bootstrap framework (Rust et al.,
20061), trend testing (Radziejewski, 2000), or as boundary
data for dynamical models.

Currently, the dominant framework for statistical mod-
elling of structures is the multifractal paradigm using scale-
free models (Mandelbrot, 1982; Turcotte, 1997). These mod-
els assume that the (statistical) properties of structures have
a power law dependence on scale. For example, the variance
of the wind or the kinetic energy of turbulence (Ek) in fractal
models is related to its wavenumber (k) as Ek∼kb, whereb is
the scaling exponent (Frisch, 1995). An important contribu-
tion of fractal modelling was that it sensitised the geophysi-
cal sciences to the existence of structure on all scales. Before
this era, many models assumed the existence of one or a few
dominant scales (Mandelbrot, 1982).

1Rust, H., Kallache, M., Kropp, J., and Schellnhuber, H.-J.:
Confidence intervals for return level estimation using a bootstrap
approach, in preparation, 2006.
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Even if the fractal approximation is able to describe a large
part of the structures found in nature, important deviations do
exist. Scale breaks, i.e. scales at which the scaling exponent
changes, have been observed and have to exist as the earth is
finite. The total power of a signal with a power law power
spectrum without a scale break would diverge, for the expo-
nentb≥−1 at small scales, and forb<−1 at large scales.

Other important non-fractal patterns are waves and cy-
cles. Gravity waves in the atmosphere can be revealed by
wave patterns in clouds. Important cycles are the diurnal
and annual cycle, and the El Niño/Southern Oscillation and
the North Atlantic Oscillation. Such cycles are normally re-
moved before fractal analysis.

Next to these two main classes, there are many more exam-
ples of non-fractal structures in the geosciences. As a result,
a new paradigm is developing for the statistical modelling of
geophysical fields, for example, in wind engineering (Mas-
ters and Gurley, 2003), hydrology (Montanari 1997; Lohre
et al., 2003; Kallache et al., 2005), earth sciences and soil
engineering (Christakos, 1992; Molz et al., 2004), and in the
cloud sciences (Evans and Wiscombe, 2004; Scheirer and
Schmidt, 2005; Venema et al., 2006a). In this approach to
statistical modelling, the presence of variability at all scales
is taken for granted, but the fractal approximation is not em-
ployed. Instead, especially in the examples from the cloud
sciences, one tries to stay as close as possible to the mea-
sured structure, for instance, by using the measured spectrum
instead of a power law fit to the spectrum.

In this new approach, one is normally not so much inter-
ested in the average structure of all fields, but rather in a sta-
tistical reconstruction or replication of a certain field, which
cannot be measured fully or repeatedly. The reconstructed
field is thus a surrogate for the measured field. Therefore,
this approach is called the surrogate data paradigm.

The word paradigm (Kuhn, 1963) is appropriate in the
sense that the fractal and the surrogate communities have
their own way of seeing the world, their own set of ques-
tions and problems, their own algorithms, and find it hard
to communicate with each other. However, in Kuhn’s “The
structure of scientific revolutions”, a new paradigm replaces
the older one. If paradigms coexist, they only do so during a
usually short revolution. Sometimes, one has to wait until the
proponents of the old paradigm leave academia. The process
of paradigm change from assuming a dominant scale to the
multifractal paradigm is still ongoing. In case of the surro-
gate data framework, we expect that it can peacefully coexist
with the fractal one. Depending on the scientific question,
one can choose the most appropriate methodology, just as
meteorologists have a range of different atmospheric mod-
els (intermediate complexity models, global and regional cli-
mate models, global and limited area weather models), from
which one can choose the most appropriate one. It may be
argued that the existence of multiple methodologies is typical
for complex system sciences.

The statistical parameters used to generate surrogate fields
are rather simple compared to multifractal modelling. Ini-
tially algorithms only used power spectra (autocorrelations)
to describe the structures. State-of-the-art algorithms addi-
tionally use the measured distribution of values. In this paper,
we want to show that the combination of these two statistics
is surprisingly effective for generating structures. We do so
by comparing empirical records and their surrogates with re-
spect to more sophisticated statistical measures such as struc-
ture functions, and increment distributions, which are used in
the multifractal community, and annual statistics and return
values, estimated using extreme value theory.

In Sect. 2, we shortly review the various algorithms to
generate surrogate time series from these measurements. In
Sect. 3, we introduce the meteorological and hydrological
measurements we have used. The ways that we compared the
surrogates with the measurements and the statistical proper-
ties we calculate are discussed in Sect. 4. The results of the
comparison are presented in Sect. 5. The paper finishes with
discussions, conclusions and an outlook.

2 Generators

The name surrogate time series and many of the algorithms
originate from the nonlinear dynamics community. They are
utilised for statistical tests, where the surrogate time series
with well known statistical properties represent the null hy-
pothesis.

In nonlinearity tests, the surrogates represent a linear dy-
namical process and are utilised to test whether a measure-
ment can be assumed to originate from a nonlinear system
(Theiler et al., 1992; Theiler and Prichard, 1996; Kugiumtzis,
1999; Kantz and Schreiber, 1999).

2.1 PDF surrogates

A simple, but useful, surrogate type is the PDF (probability
density function) surrogate (Theiler et al., 1992). PDF sur-
rogates have the same value distribution as the measurement,
but on average no autocorrelations. Random indices can be
produced by sorting white noise while keeping track of the
indices. These random indices can then be used to randomly
permute the measured values.

2.2 Fourier surrogates

Another simple surrogate time series is the Fourier surro-
gate (Theiler et al., 1992). The only stationary solutions of
a linear dynamical system are cosines and a constant. As
the Fourier transform constitutes a decomposition of a signal
into cosine functions, the magnitudes of the Fourier spectrum
completely describe a stationary linear system. The differ-
ence between a linear and a nonlinear stationary signal must
thus lie in their Fourier phases.
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These surrogates have the same Fourier spectrum as the
measurements they are based on, but random Fourier phases.
The Fourier generator computes the complex Fourier coeffi-
cients (reiϕ) of these surrogates by combining the Fourier
phases (ϕ) of white noise with the magnitudes (r) of the
Fourier coefficients of the measurement. By randomizing
the phases, all nonlinearity is destroyed. Fourier surro-
gates are thus used to represent a linear dynamical system.
A Fourier surrogate with a sufficient number of significant
Fourier components will, by the central limit theorem, have
a Gaussian distribution.

2.3 AAFT surrogates

It is possible that the measurement is nonlinear due to a
static nonlinearity. Thus it may be that a record with a non-
Gaussian distribution does not originate from a nonlinear dy-
namical system, but rather from a linear system which is
measured by a static nonlinear measurement function. As
the nonlinear dynamics community is not interested in static
nonlinearities, they have developed a number of algorithms
that include both the Fourier spectrum (for the linear dynam-
ics) as well as the distribution (for the static nonlinearity).
We will only describe the ones used in this study.

The first algorithm to generate such signals was the Ampli-
tude Adjusted Fourier Transform (AAFT) algorithm (Theiler
et al., 1992). This algorithm is similar to the Fourier method.
First, the measured time series is converted to a time series
with a Gaussian distribution, then the Fourier method is ap-
plied and finally the Gaussian distribution of the surrogate is
converted back to the measured distribution. This computa-
tionally efficient algorithm has two weaknesses. Firstly, the
nonlinear static function used for the conversions needs to be
invertible. This is problematic, e.g., in the case of rain and
cumulus measurements, as they have many zero values. Sec-
ondly, the spectrum of the surrogates is not the same as the
one of the measurement, but has a bias towards a white noise
spectrum (Schreiber and Schmitz, 2000).

2.4 IAAFT surrogates

As an alternative, Schreiber and Schmitz (1996, 2000) devel-
oped an iterative AAFT (IAAFT) algorithm. It works with
the spectrum of the measurement, not with the spectrum of
its Gaussian counterpart as the AAFT algorithm does. In the
first step, it adjusts the Fourier spectrum in the same way as
the Fourier generator above, i.e. it adjusts the magnitudes of
the Fourier coefficients, but keeps the phases intact. In the
second step, it adjusts the distribution to the measured one,
thus changing the spectrum somewhat. Therefore, one has to
iterate to get high-quality surrogates. If one stops iterating
after the second step, i.e. after adjusting the distribution, one
has a surrogate with exactly the same values as the measure-
ment and almost the same power spectrum.

In the engineering community, the IAAFT algorithm was
discovered independently (Masters and Gurley, 2003) to sim-
ulate wind pressure fields and offshore waves. Masters and
Gurley compared the IAAFT algorithm to older methods
used in the engineering community and found the IAAFT
algorithm to be more accurate.

2.5 SIAAFT surrogates

Unfortunately, the IAAFT algorithm normally gets trapped
in a local minimum after which it no longer converges.
In the Stochastic IAAFT (SIAAFT), developed by Venema
et al. (2006b), the adjustment of the distribution is made
stochastically. As a consequence, the algorithm gets stuck
in local minima less easily, and achieves a better approxima-
tion to the Fourier spectrum. Otherwise, the algorithm is the
same as the IAAFT algorithm.

2.6 FARIMA surrogates

The last two algorithms used here involve a parametric ap-
proach to represent the spectral properties of the measure-
ments as a family of Gaussian stochastic processes. Those
processes play a prevailing role in the linear time series
analysis and are known as fractional integrated autoregres-
sive moving average (FARIMA) processes (Brockwell and
Davis, 1991; Beran, 1994). FARIMA processes are fre-
quently used also in geophysical contexts to describe com-
plex signals in cases where models based on physical pro-
cesses are not feasible or explicitly not asked for. Besides be-
ing very flexible in reproducing the autocorrelation function
(ACF), FARIMA processes are able to reproduce the Hurst
phenomenon (Hurst, 1951) observed in certain types of geo-
physical time series (Montanari, 1997; Koutsoyiannis, 2002).
A record is said to exhibit the Hurst phenomenon if it shows
a slow (algebraic) decay of the autocorrelation function for
large lags.

We estimate the fractional differencing parameterd and
the autoregressiveφ1, φ2,.., φp and moving-average param-
etersψ1, ψ2,..., ψq of a FARIMA[p, d, q] processes using
the Whittle approximation to the maximum likelihood (ML)
estimator, which is numerically more efficient than the ex-
act ML estimator (Haslett and Raftery, 1989) while retain-
ing the asymptotic distribution. A detailed description of
FARIMA processes and the associated parameter estimation
can be found in Beran (1994).

The orders of the autoregressive (p) and moving average
component (q) are a priori unknown and can be inferred us-
ing the Hannan-Quinn Information Criterion (HIC) which
is advocated for FARIMA[p, d, q] processes (Hannan and
Quinn, 1979; Beran et al., 1998; Bisaglia, 2002):

HIC = N log σ̂ 2
η + 2c log logN(p + q + 1), (1)
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Table 1. Parameters of the FARIMA processes of the various signals. A dash for the log-transform constant (α)means that no log transform
was performed.

α Process Parameters

p-model 1.39 [1,d,1] d=0.38±0.01,φ1=−0.20±0.09,ψ1=0.27±0.09
Rain Potsdam 1.82 [2,0,1] φ1=0.47±0.03, φ2=−0.13±0.01,ψ1=0.74±0.03
Runoff Burghausen 0 [2,d,2] d=0.30±0.02,φ1=1.19±0.04,φ2=−0.28±0.02,

ψ1=−0.56±0.02,ψ2=−0.16±0.01
Runoff Cologne 0 [3,d,1] d=0.41±0.02,φ1=1.46±0.07,φ2=−0.68±0.08,φ3=0.12±0.03,

ψ1=−0.15±0.06
Cumulus 5·10−4 [1,d,0] d=0.20±0.07 andφ1=0.63±0.07
Stratocumulus – [1,d,1] d=0.62±0.04,φ1=−0.24±0.13,ψ1=0.51±0.10
Temperature – [3,d,0] d=0.14±0.01,φ1=0.74±0.02,φ2=−0.15±0.01,φ3=0.06±0.01

with c>1 andσ̂ 2
η the ML estimate of the variance of the driv-

ing noiseσ 2
η . We choose the ordersp andq such that the

HIC with c=1.0001 takes a minimum.
There are several algorithms to simulate data from a

FARIMA process (Bardet et al., 2003). Here, we use a
method based on the inverse Fourier transform described in
Timmer and K̈onig (1995) for simulating self-similar pro-
cesses which can be straightforwardly extended to FARIMA
processes. A set of routines written in the computer lan-
guage R with the algorithms for FARIMA parameter estima-
tion (based on the code from Beran, 1994), model selection
(HIC) and the simulation can be obtained from Rust (2006).

Since a FARIMA process is a Gaussian process, a time
series simulated from it has a normal marginal distribution
unlike most of the empirical geophysical records. Thus, it
is convenient to transform the observed record to get closer
to a normal distribution before the parameter estimation and
to transform it back afterwards. For many records, a log-
transform

y = log(x + α) (2)

turned out to be convenient, withα being a positive constant
to avoid problems with negative values. This transformation
is applied to all data sets studied except the Liquid Water
Content (LWC) of the stratocumulus and the Potsdam tem-
perature series. The parameterα is chosen in a way that,
for the transformed series, the Kolmogorov-Smirnov statistic
(maximum deviation of the empirical cumulative distribution
function from a normal distribution) is minimized. The pa-
rameters of the FARIMA processes for the various records
are listed in Table 1. Additionally, we removed the seasonal
cycle after the log transform for the runoff and temperature
records by subtracting the mean of, for example, 1 January
over all years from all data for each 1 January. Further, we di-
vide by its standard deviation to ensure a homogeneous vari-
ance throughout the year. This transformation is applied in
reverse for the surrogate records generated with the FARIMA
model.

2.7 FARIMA + IAAFT surrogates

As an extension to the conventional FARIMA modelling, we
suggest adjusting the value distribution of a simulated series
according to the observed record using the IAAFT algorithm.
The IAAFT procedure is analogous to the one described be-
fore, only instead of adjusting the periodogram of the sur-
rogate to the one from the empirical series, we adjust to the
periodogram of a FARIMA realisation. Hence, for every sur-
rogate we use the same value distribution, while the peri-
odogram is different for every surrogate and stems from a
realization of the chosen FARIMA process. This type of sur-
rogate is denoted with FARIMA + IAAFT, while surrogates
from the standard method are referred to as FARIMA.

2.8 Algorithm groups

To facilitate the presentation of the results, we group the
above methods in the following as:

– Fourier-based surrogates: Fourier, AAFT, IAAFT,
SIAAFT;

– FARIMA-based: FARIMA, FARIMA + IAAFT;

– Two-statistic surrogates: AAFT, IAAFT, SIAAFT,
FARIMA + IAAFT.

3 Measurements and surrogates

As input, we use historical data, cloud measurements and a
realization of a theoretical multifractal. In Fig. 1, the struc-
ture of all seven time series is illustrated by displaying a typ-
ical interval. The historical data are the time series of daily
mean temperature and daily precipitation sums from a sta-
tion in Germany, and the daily river runoff from a large and
a small catchment. The high-resolution cloud liquid water
measurements were obtained from a cumulus and a stratocu-
mulus field. The realization of the theoretical multifractal
originates from the p-model; see Sect. 3.1.
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Figure 1. The structure of the measurements we have used as input. Except for the cloud 
measurements, only a small part of the time series is shown, as otherwise the interesting 
small scale structure would not be visible. 

Fig. 1. The structure of the measurements we have used as input. Except for the cloud measurements, only a small part of the time series is
shown, as otherwise the interesting small scale structure would not be visible.

These time series were selected because they contain a va-
riety of features that are also typical for other geophysical
time series. The temperature measurements have a strong an-
nual cycle, the runoff measurements a weaker one. Further-
more, the dynamics of the river runoff is asymmetric in time,
with fast swells and slower decreases. The rain and cumulus
time series display burst-like intermittency. The stratocumu-
lus measurement has a nearly fractal structure. The multi-
fractal was chosen as an idealised geophysical model with
strong intermittency, and because multifractal modelling is
often applied in the geosciences. Furthermore, these time se-
ries were chosen for their length. Long records improve the
performance of the structure function analysis.

3.1 P-model

Apart from empirical records, we study a time series sim-
ulated with the fractional integrated multifractal p-model
(Davis et al., 1997; Wilson et al., 1991), which is a simple
Fourier filtered multiplicative cascade model. With the pa-
rameter valuesp=0.6 (where thisp is different to the one
used in FARIMA modelling) and spectral exponents=−0.8,
we generate a time series with 32 768 values. We will treat
this time series as one of the historical measurements, i.e. a
record of 90 years of daily values of an arbitrary variable.
However, when we refer to “real measurements”, the realisa-
tion of the p-model is not included.
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3.2 Daily rain sums and mean daily temperature

Records of precipitation and temperature data from the long-
term meteorological station in Potsdam were acquired freely
from the German weather service; this data was measured
daily from 1893 to 2003 and has no gaps (DWD, 2006). The
daily records have not been examined for homogeneity, but
the observations at Potsdam are believed to be of good qual-
ity, in part due to the fact that the station has never been
moved (Lehmann, 2001).

The precipitation time series is characterised by strong
burst-like intermittency: about 51% of the values are zero
due to days without significant rainfall. In order to benefit
from the efficient fast Fourier transform (FFT), the temper-
ature and precipitation time series were truncated to 40 500
values. Since the temperature data show strong seasonality, it
is convenient to remove this periodic cycle prior to FARIMA
modelling as described in Sect. 2.

3.3 Runoff

The runoff data were provided by the Global Runoff Data
Centre (GRDC, 2006); we have chosen daily records from
two gauge stations of catchments with very different sizes:
(1) station Cologne on the river Rhine in the western part
of Germany with a catchment size of 144 232 km2 and (2)
station Burghausen on the river Salzach in southern Germany
with a catchment area of 6649 km2. The runoff time series
span the years 1817 to 2001 for Cologne and 1827 to 1991 for
Burghausen. These records have also been selected because
of their completeness.

In order to be able to benefit from the efficient fast Fourier
transform (FFT), the runoff time series at Cologne was trun-
cated to 67 500 values. The runoff time series at Burghausen
was extended by adding 100 average values at the end to
reach a total of 60 000 datapoint.

3.4 Cloud measurements

The two cloud measurements are taken from the INSPEC-
TRO measurement campaign performed on the east coast of
the UK in 2002 (Kylling et al., 2005). The liquid water con-
tent (in g m−3) measurements were obtained using a Particle
Volume Measurement (PVM) probe. This optical laser cloud
probe has an integration time of 1 s. It was mounted on a
small aircraft that flew through the clouds.

We have selected long tracks during which the airplane
flew horizontally in about the middle of the clouds. The stra-
tocumulus case was measured on 14 September and contains
1024 values. The cumulus cloud was measured on the 22nd
and has 1600 data points. The differencing parameterd is
larger than 0.5 for the stratocumulus measurement and thus
not in the stationary domain, implying that not the record
itself, but the increment record can be modelled with a sta-
tionary FARIMA process.

4 Methodology

We want to demonstrate the usefulness of surrogate tech-
niques in geophysical modelling by discussing several ex-
amples. Because surrogates do not reproduce all thinkable
characteristics of a time series or a field, the appropriateness
and accuracy of surrogate time series and fields (just as mul-
tifractal ones) has to be ascertained. This can only be shown
with respect to a specific type of application. For example,
Venema et al. (2006a) previously compared the optical prop-
erties of 3-D model liquid water clouds and their surrogates
and found that they matched each other within the statistical
uncertainty. This shows that surrogate clouds are likely to
be useful to study the relationship between cloud structure
and radiative transfer through clouds. In this study, we do
not have such an application. Instead, we have chosen to in-
vestigate the statistical properties of the surrogates utilising a
number of comprehensive statistical measures. The surpris-
ingly good results for these statistics for a range of different
kinds of data will hopefully stimulate other researchers work-
ing on structure to try to use surrogate techniques to solve
their problems. As statistical measures, we have chosen the
power spectrum, the increment distribution, structure func-
tions, annual statistics (e.g. percentiles) and long-year return
values.

The increment distributions and structure functions are of
special interest for scientists working within the multifractal
paradigm, as these scientists often view algorithms based on
Fourier methods as monofractal. We will demonstrate that
surrogates that allow for non-Gaussian distributions have a
much richer structure than the Gaussian “monofractal” ones.
In addition, these surrogates have the advantage that the frac-
tal approximation or assumption is not needed.

For an honest comparison of the seven generators, we first
generated the surrogates and then analysed their results; thus
the algorithms were not tuned to the records to yield good
results. To get an idea on the variability of the results, we
generated a small ensemble of 10 surrogates for each mea-
surement.

4.1 Power spectra

In the following, the measured time series is denoted by the
vector {mn}, with the index n={0,1,...,N-1}, where N is the
number of values of the measurement. The Fourier coeffi-
cients (Mk) are calculated as:

Mk =

N−1∑
n=0

mne
i2πkn/N , k =

[
0, ...,

N − 1

2

]
, (3)

where the [x] denotes the integer part of x. Squaring the
Fourier coefficients yields the periodogram, which represents
the variance of the time series on the scale corresponding to
the wavenumberk. Since this estimate of the power spectrum
is very noisy, we use octave binning in the figures (Davis et
al., 1999). In octave binning, the mean variance (power) and
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the mean wavenumber is calculated for eight bins per order
of magnitude.

Because periodograms are noisy estimates, a direct com-
parison is not very useful. Instead, the difference between
the periodograms of the original and surrogate time series is
represented by the maximal deviationD of their cumulative
periodogramsPj :

Pj =

j∑
k=0

Mk, j =

[
0, ..,

N − 1

2

]
(4)

These cumulative periodograms are normalised to run from
zero to unity to obtain a curve similar to an empirical cumu-
lative distribution function. Analogue to the Kolmogorov-
Smirnov (KS) distance, which is used to test whether two dis-
tributions are equal, we then calculate the maximum distance
D between the two normalised cumulative periodograms:

D = max
j

∣∣Psurrogate(j)− Poriginal(j)
∣∣ (5)

4.2 Increment distributions

A simple but very comprehensive statistic which is much
used in turbulence research is the increment distribution. For
lag (l), the increments (ρi) are given by:

ρi = mi+l −mi, ∀ i ∈ {0, 1, . . ., N − l − 1}, (6)

The increment distribution can, for example, reveal whether
the variability at a certain scale is homogeneously distributed
or caused by a few large increments (jumps) and many
smaller increments. Also, asymmetries in the dynamics (e.g.
steep increases and slow decreases) are visible here.

4.3 Structure functions

To facilitate the study of the shape of the increment distribu-
tion as a function of its lag (scale), it is common in multi-
fractal analysis to calculate the average moments (q) of the
absolute increments as a function of the lagl:

SF(q, l) =
〈
|ρi(l)|

q
〉

(7)

where〈·〉 denotes an average. This approach is called struc-
ture function (SF) analysis. In multifractal analysis, one
would try to fit a power law to a SF as a function of the
scalel. Because the absolute values of the increments are
used, the information on the asymmetry of the dynamics is
lost. In much work on turbulence, a definition of the SF is
used without the modulus operator, so that asymmetries can
be studied.

The second order SF (i.e.q=2) is equivalent to the auto-
correlation function and thus also equivalent to the power
spectrum. As a consequence, the surrogates (except the PDF
surrogates) should reproduce the second order SF and the
variance of the increment distribution well.

As a measure of how accurately the surrogates reproduce
the structure functions, we compare the root mean square
(RMS) relative difference of the octave binned 4th order co-
efficients of the data (M ′

k) and of the surrogate (S′

k):

1SF=

√
1

N

∑
k

(
M ′

k − S′

k

)2
/
M

′2
k (8)

This error measure was chosen to give equal weight to every
order of magnitude. At large scales, the structure functions
become noisy due to the finite length of the time series, and
even the p-model shows significant deviations from a fractal
spectrum. As a consequence we did not calculate the SF for
the largest two orders of magnitude in the case of the cloud
measurements, and the largest three orders of magnitude for
the other time series.

4.4 Annual statistics

Some basic statistical measures of the annual distribution are
calculated. Their distributions are compared between the
original and surrogate time series. For temperature, runoff,
and the p-model, the selected statistics are: mean value, max-
imum value, and the 5th and 95th percentile values. Those
have been chosen in order to capture both the average and
the extreme characteristics of the time series. Since precipi-
tation data exhibit very special characteristics (e.g. limited to
positive values, occurrence of zero values), different statistics
were chosen. They are based on the definition of a “rain day”
as a day where the precipitation sum is equal to or larger than
1 mm. These statistics are: number of rain days, mean inten-
sity (= average precipitation on rainy days), maximum rain-
fall, and the 95th percentile value. The cloud measurements
are not considered here because of their different temporal
range. The distributions of the annual statistics between sur-
rogates and original time series are compared by means of
the KS statisticD, as described before.

4.5 Return values

Return values are calculated using extreme value statistics: a
Generalised Extreme Value (GEV) distribution (Coles, 2001)
with distribution function

G(z) = exp

−

[
1 + ξ

(
z− µ

σ

)]-1/ξ
 (9)

with parametersξ , µ andσ , which are fitted to the annual
maxima of all measurements and their surrogates using the
EVIM package for Matlab (Gençai et al., 2001). Return val-
ues are then calculated for return periods ranging from 2 to
100 years. The deviations of the 50-year return levels (de-
noted by RV50) are examined more closely in Sect. 5.
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Table 2. The difference in the estimates of the power spectrum as calculated by the Kolmogorov-Smirnov distanceD; see Eq. (5). For each
surrogate method, the quality of the approximation of the power spectrum is quantified by calculating the differenceD between the average
cumulative periodogram of the ensemble and the original periodogram (top). We assess the variability of the ensemble by calculating the
mean (absolute) value from the individual distancesD for each ensemble member (bottom).

SIAAFT IAAFT AAFT Fourier PDF FARIMA FARIMA + IAAFT

Bias
P-model 1.310−05 5.810−05 5.410−02 – 4.410−01 2.010−02 2.410−02

Rain Potsdam 2.610−03 6.210−03 6.210−02 – 1.010−01 3.410−02 2.510−02

Runoff Burghausen 2.010−04 1.810−03 1.210−01 – 6.810−01 1.310−01 1.310−01

Runoff Cologne 4.810−05 3.410−04 9.010−02 – 8.110−01 1.810−01 1.810−01

Cumulus 1.010−02 1.910−02 1.310−01 – 5.210−01 7.910−02 1.110−01

Stratocumulus 9.810−05 8.110−04 1.610−02 – 7.210−01 1.810−01 1.810−01

Temperature 5.610−05 7.110−04 4.110−02 – 8.010−01 1.010−02 1.110−02

Variabilty
P-model 1.310−05 5.810−05 5.510−02 – 4.410−01 4.010−02 4.110−02

Rain Potsdam 2.710−03 6.410−03 6.210−02 – 1.010−01 3.510−02 2.610−02

Runoff Burghausen 2.010−04 1.810−03 1.210−01 – 6.810−01 1.410−01 1.310−01

Runoff Cologne 5.210−05 3.510−04 9.210−02 – 8.110−01 1.810−01 1.810−01

Cumulus 1.310−02 2.410−02 1.510−01 – 5.210−01 9.910−02 1.210−01

Stratocumulus 1.410−04 9.510−04 1.910−02 – 7.210−01 2.110−01 2.110−01

Temperature 5.710−05 7.210−04 4.110−02 – 8.010−01 1.110−02 1.110−02

5 Results

In this section, we will show how well the seven types of
surrogates are able to reproduce the original time series.
An example of the cumulus measurement and of its surro-
gates is shown in Fig. 2. Due to the large number of ob-
servations, types of surrogates and the many statistical mea-
sures, we cannot display all results. Instead, we will only
show a number of figures that illustrate the most striking fea-
tures. A comprehensive overview with automatically gener-
ated quicklook plots can be found in Venema (2006).

5.1 Power spectra

As all surrogates (except the PDF surrogates) try to repro-
duce spectral properties, we first look at the power spectra.
Table 2 lists the maximum deviationD between the nor-
malised cumulative periodograms of the surrogates and the
measurements. Fourier based surrogates and FARIMA sur-
rogates differ because the former generate a time series with
exactly the same Fourier coefficients while the latter estimate
the underlying – much smoother – power spectrum and based
on this spectrum generate a noisy periodogram.

It can be seen that a large part of the difference of the
FARIMA surrogates is due to bias rather than variability
in the ensemble. This bias error is partly due to the log-
transform that is applied to most records before FARIMA
modelling. The log-transformed data are not sufficiently nor-
mally distributed. The time series generated from a FARIMA

process are normally distributed sharing the variance of the
log-transformed original record. However, after the inverse
transform with an exponential function, the variances in the
exponentially transformed time series and the original record
are not the same.

The inclusion of the value distribution in the FARIMA
scheme resulted in only a minimal loss of spectral accuracy.
The SIAAFT method is more accurate in reproducing the pe-
riodogram than the IAAFT method which is again more ac-
curate than the AAFT algorithm.

The power spectra of the p-model and its AAFT and
SIAAFT surrogates are shown in Fig. 3. It can be seen that
the SIAAFT surrogates reproduce the spectrum very accu-
rately, whereas the slope of the AAFT surrogate is too flat,
i.e. it has too much variance at small scales and too little
at large scales. This is typical for AAFT surrogates and is
known as the white noise bias (Schreiber and Schmitz, 2000).

Surprisingly, the spectra of the AAFT surrogates of
the rain measurement and the runoff measurement in
Burghausen (Fig. 4) have too little variance on small scales,
contrary to the white noise bias. We speculate that, for rain,
this deviation is caused by the conversion of the measurement
data to a time series with a Gaussian distribution. In this step,
the sorting algorithm keeps the original order in case values
are exactly the same. In the rain measurement many equal
values occur due to the many days without (significant) rain,
i.e. 0 mm/d (51%). As a consequence, the rain-free days at
the beginning of the time series get lower values in the Gaus-
sian time series than rain-free days at the end of the series.
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Figure 2. A measurement of the liquid water content (LWC) of a cumulus cloud field and 
its seven surrogates. 

Fig. 2. A measurement of the liquid water content (LWC) of a cumulus cloud field and its seven surrogates.

This leads to a positive trend in this Gaussian time series and
thus to enhanced variability on large scales, which conse-
quently results in a lack of variance at small scales as the
total variance is fixed. This idea is confirmed by the fact that
the problem disappears when a little bit of noise is added, to
make all values unique and spread the low values evenly over
the Gaussian time series.

Adding some noise to the runoff measurement at
Burghausen did not solve its red noise bias, however. This
runoff measurement is also strongly discretised and as a con-
sequence, every value occurs on average 44 times, but dif-
ferent from the rain measurement, there is not one value that
dominates the distribution. We could not find a conclusive
reason for this red noise bias.

5.2 Increment distributions

Figure 5 shows the increment distribution for a lag of one day
of the temperature measurement and all its surrogates except
for the PDF surrogate. The latter deviated too much to be
displayed in the same plot as the others. The temperature
increment distribution is slightly asymmetric. Temperature
jumps between 5 and 10◦C per day are more likely to go
down than up. This is probably related to frontal activity.
This asymmetry is not found in any of the surrogates.

The increment distribution of the Fourier surrogates is
nearly Gaussian, while the increment distribution of the mea-
surement shows a somewhat thicker tail. This tail is well re-
produced by all surrogates, except the PDF and the Fourier
surrogates. The number of small temperature jumps of less

www.nonlin-processes-geophys.net/13/449/2006/ Nonlin. Processes Geophys., 13, 449–466, 2006



458 V. Venema et al.: Surrogates of geophysical measurements

 47

100 102

10-4

10-3

10-2

Frequency (1/a)

AAFT surrogates
SIAAFT surrogates
original

 
 
Figure 3. The power spectra estimated by octave binning of the periodogram of the p-
model and its ten AAFT surrogates and ten SIAAFT surrogates (which have no visible 
scatter). To enhance clarity, the values of the original series are plotted as squares, while 
the results of the surrogates are connected with lines. 
 
 

Fig. 3. The power spectra estimated by octave binning of the pe-
riodogram of the p-model and its ten AAFT surrogates and ten
SIAAFT surrogates (which have no visible scatter). To enhance
clarity, the values of the original series are plotted as squares, while
the results of the surrogates are connected with lines.
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Figure 4. The binned power spectra of the runoff at Burghausen and its ten AAFT and ten 
IAAFT surrogates. 
 

Fig. 4. The binned power spectra of the runoff at Burghausen and
its ten AAFT and ten IAAFT surrogates.

than 2◦C is underestimated by the surrogates (see inset of
Fig. 5). The SIAAFT surrogates are the best in this respect.
In general, the original increment distribution is best matched
by the IAAFT, SIAAFT and FARIMA + IAAFT surrogates.

The asymmetry in the tail of the increment distribution
is clearly visible in the runoff measurement of the Rhine
(Fig. 6). Increments larger than 500 m3 s−1 are more likely to
be upward than downward. Increments of +2000 m3 s−1 are
35 times more likely than increments of−2000 m3 s−1. Be-
cause the mean increment has to be around zero, these large
upward jumps result in a negative (−20 m3 s−1) most likely
runoff increment, i.e., most days the water table of the river
sinks, but when it rises it does so strongly. The increment

 49

 
Figure 5. Histograms of the increment distribution of the temperature measurement in 
Potsdam and its surrogates for a lag of one day. The increments have bins of 1 °C, and the 
histograms are normalised on the maximum number of bins of the measured temperature. 
The inset is an enlargement of the top of the distribution. 
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Fig. 5. Histograms of the increment distribution of the temperature
measurement in Potsdam and its surrogates for a lag of one day. The
increments have bins of 1◦C, and the histograms are normalised on
the maximum number of bins of the measured temperature. The
inset is an enlargement of the top of the distribution.
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Figure 6. Histograms of the increment distribution for the runoff of the Rhine at Cologne and its 
surrogates. For the main figure, the runoff has broad bins of 400 m3s-1, to decrease the noise for 
the rare jumps in the tails; the inset has fine bins of 20 m3s-1, to show the detailed distribution for 
the smallest increments. The histograms are normalised by the maximum number of bins of the 
measured runoff. 
 

-200 0 200

0.2

0.4

0.6

0.8

1

Fig. 6. Histograms of the increment distribution for the runoff of the
Rhine at Cologne and its surrogates. For the main figure, the runoff
has broad bins of 400 m3 s−1, to decrease the noise for the rare
jumps in the tails; the inset has fine bins of 20 m3 s−1, to show the
detailed distribution for the smallest increments. The histograms
are normalised by the maximum number of bins of the measured
runoff.
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Table 3. The moments of the increment distribution for a lag of one day for the runoff records at Burghausen (Salzach) and Cologne (Rhine)
and their surrogates.

Record SIAAFT IAAFT AAFT Fourier PDF FARIMA FARIMA + IAAFT

Burghausen
std. deviation 91.4 91.4 91.7 64.7 91.4 263 57.6 63.5
skewness 2.15 −0.012 −0.019 0.014 0.004 −0.006 0.026 0.163
kurtosis 49.5 40.0 46.9 28.8 −0.2 6.1 6.8 92.7

Cologne
std. deviation 210 211 211 181 211 1481 153 165
skewness 3.22 0.011 0.000 0.013 0.000 −0.006 0.061 0.029
kurtosis 32.6 7.5 7.5 6.9 −0.1 3.7 10.5 8.2

distributions of the surrogates are symmetrical and do not
have this thick tail for positive increments.

In Table 3, we computed the unbiased standard deviation,
skewness and kurtosis of the increments of the runoff records
and their surrogates. The measured increments are strongly
positively skewed, indicating more upward jumps, whereas
the increments of the surrogates are minimally skewed, indi-
cating symmetrical distributions.

To study the behaviour of the increments as a function of
lag time, the skewness of the increment distributions of the
runoff in Cologne was plotted for every lag (Fig. 7). This
clearly reveals the skewness of the measured increments and
the symmetry of the increments of the IAAFT surrogates.
All other surrogates look similar, expect for the FARIMA
surrogate, which is able to model some skewness due to its
seasonal cycle. Also the runoff at Burghausen and the tem-
perature record are characterised by skewed increment dis-
tributions, which are not modelled by any surrogate, expect
partially for the FARIMA ones.

The number of small increments is much lower in the sur-
rogates and is best replicated by the FARIMA-based surro-
gates (see inset in Fig. 6). On average, the tails are best re-
produced by the SIAAFT and IAAFT surrogates. The rain
measurement has a very thick-tailed non-Gaussian increment
distribution (not shown), which is well captured by all surro-
gates, except the Fourier and FARIMA surrogates.

5.3 Structure functions

For an overview of the results for the structure functions, we
calculated the difference between the binned 4th order struc-
ture function (1SF; Eq. 8) of the measurement and the sur-
rogates in Table 4. Remembering that the 2nd order structure
function is equivalent to the power spectrum, the 4th order SF
was chosen, as it puts more emphasis on the tail of increment
distribution.

The last column of this table is the difference of the 4th or-
der SF to its linear fit in a log-log plot; this represents a first
estimate of the difference one could expect to achieve with 51
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Figure 7. The skewness of the increment distribution as a function of the lag of the 
increments. 

Fig. 7. The skewness of the increment distribution as a function of
the lag of the increments.

a multifractal method (without subtracting cycles). For the
fractal p-model and the rain records, this “multifractal gener-
ator” has the lowest deviation. The other measurements con-
tain a stronger deviation from a power law fit and are more
accurately reproduced by surrogate methods. The Fourier
and the FARIMA surrogates have the largest deviations in
the structure functions.

The structure functions of the LWC of the cumulus cloud
are shown in Fig. 8 together with the mean SF over ten runs
for PDF, Fourier and AAFT surrogates. The structure func-
tions of the PDF surrogates are horizontal lines and match
quite well at large scales where correlations are not strong,
illustrating the link between the structure functions and the
distribution. Fourier surrogates, instead, approximately re-
produce the curved shape of the structure functions of the
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Figure 8. The structure function spectra for the orders (q) 1 to 6 for the cumulus cloud 
measurement and its PDF, Fourier and AAFT surrogates. The values over octave bins are 
indicated by a square for the measurement or a cross for the surrogates. 

Fig. 8. The structure function spectra for the orders (q) 1 to 6 for the cumulus cloud measurement and its PDF, Fourier and AAFT surrogates.
The values over octave bins are indicated by a square for the measurement or a cross for the surrogates.

measurement, although, as expected, they have an offset
which gets larger with the moments deviating more from the
2nd moment of the structure function. The offset is negative
for moments larger than the second and positive otherwise.
The SF of the AAFT surrogates fit well at large scales, and
have a similar curvature as the SF of the measurement.

Figure 9 allows a closer analysis of the SF for a number
of surrogates by only displaying its 4th moment. It shows
that the SIAAFT, IAAFT and FARIMA + IAAFT surrogates
fit even better than the AAFT surrogate, this improvement
is characteristic for all real measurements. The average SF
of the FARIMA surrogates is a little closer to the original
structure function than the SF of the Fourier surrogates (see
Table 4); the log-transformation of the original and back-
transformation of the simulated series already partially ac-
count for the non-Gaussian distribution. Systematic differ-
ences in the SIAAFT, IAAFT and FARIMA + IAAFT surro-
gates are mainly found at small scales, which is typical for
all seven measurements.

The results achieved for the stratocumulus cloud (Fig. 10)
are very similar, except that here, the AAFT surrogates are
on par with their iterative counterparts. This measurement

shows a noticeable deviation from the FARIMA-based sur-
rogates. Due to the parametric formulation, FARIMA-based
surrogates favour a smooth spectrum and do not reproduce
small fluctuations in the structure functions, such as the dip
on scales around 100 s. The non-parametric Fourier-based
surrogates are superior in this respect.

The structure functions of the runoff records are re-
produced reasonably well by the IAAFT, SIAAFT and
FARIMA + IAAFT surrogates (figure not shown). Fourier
and FARIMA have more difficulties especially for the small
catchment (Burghausen). Deviations are also found here on
small scales, increasing with the SF moment. The seasonal
cycle leads to periodic deviations at large scales which are
comparably small for the large catchment (Cologne) but be-
come relevant for Burghausen, the gauge exhibiting stronger
seasonality.

5.4 Annual statistics

The annual statistics for the original records and the sur-
rogates are compared in terms of their frequency distribu-
tion. The similarity of the distributions is assessed via the
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Table 4. The difference (1SF) in the 4th order structure functions as calculated by the RMS relative difference over all lags; see Eq. (8). For
each surrogate method, the quality of the approximation of the structure function is quantified by calculating the difference1SF between
the average SF of the ensemble and the original SF (top). We assess the variability of the ensemble by calculating the mean value from the
individual differences1SF for each ensemble member (bottom). The surrogate method which yields the smallest differences is indicated by
a bold typeface. The last column shows1SF calculated for a linear fit in the log-log plot, which is the difference from an ideal multifractal
model.

SIAAFT IAAFT AAFT Fourier PDF FARIMA FARIMA + IAAFT Multifractal

Bias
P-model 0.018 0.019 0.016 0.071 0.065 0.068 0.020 0.017
Rain Potsdam 0.0027 0.0021 0.0038 0.093 0.0023 0.099 0.0029 0.0020
Runoff Burghausen 0.011 0.0069 0.029 0.076 0.081 0.076 0.023 0.028
Runoff Cologne 0.016 0.016 0.025 0.064 1.6 0.043 0.034 0.19
Cumulus 0.012 0.0080 0.016 0.076 0.044 0.063 0.0070 0.029
Stratocumulus 0.018 0.017 0.018 0.026 0.49 0.042 0.038 0.028
Temperature 0.0027 0.0037 0.016 0.0062 1.7 0.0060 0.0055 0.073

Variabilty
P-model 0.18 0.19 0.17 0.71 0.65 0.68 0.20 0.17
Rain Potsdam 0.032 0.028 0.048 0.92 0.036 0.99 0.037 0.020
Runoff Burghausen 0.12 0.081 0.31 0.76 0.81 0.76 0.24 0.28
Runoff Cologne 0.16 0.16 0.26 0.64 16 0.45 0.35 1.9
Cumulus 0.14 0.10 0.20 0.76 0.45 1.5 0.13 0.29
Stratocumulus 0.19 0.18 0.19 0.26 4.9 0.46 0.40 0.28
Temperature 0.034 0.040 0.17 0.066 17 0.062 0.057 0.73
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Figure 9. The 4th order structure function for the cumulus cloud measurement and its 
SIAAFT, IAAFT, AAFT, FARIMA and FARIMA + IAAFT surrogates. Fig. 9. The 4th order structure function for the cumulus cloud mea-
surement and its SIAAFT, IAAFT, AAFT, FARIMA and FARIMA
+ IAAFT surrogates.

Kolmogorov-Smirnov distanceD which is based on the max-
imum difference in the empirical distribution functions.

The differencesD for the annual 95th percentile value
are shown in Fig. 11. A small distance (smallD value)
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Figure 10. The 4th order structure function for the stratocumulus cloud measurement and 
its SIAAFT, IAAFT, AAFT, FARIMA and FARIMA + IAAFT surrogates. Fig. 10. The 4th order structure function for the stratocumulus
cloud measurement and its SIAAFT, IAAFT, AAFT, FARIMA and
FARIMA + IAAFT surrogates.

means that the two distributions are relatively similar. Those
cases where the hypothesis of similarity is not rejected by
the KS-test on the 5% level are marked by a green triangle.
This is the case for four surrogates for the daily rain sums

www.nonlin-processes-geophys.net/13/449/2006/ Nonlin. Processes Geophys., 13, 449–466, 2006



462 V. Venema et al.: Surrogates of geophysical measurements

 55

0.1

0.4 p-model

0.1

0.4 daily rain sums

0.1

0.4 runoff Burghausen

0.1

0.4 runoff Cologne

SIAAFT IAAFT AAFT Fourier PDF FARIMA F+IAAFT

0.1

0.4 temperature

 
 
 
Figure 11. The Kolmogorov-Smirnov distance of the distributions of the annual 95 
percentile value between the measurement and its surrogates. The box plots show the 
spread of the ten surrogates. The red line in the box plots represents the median. The box 
indicates the 25 and 75 percentile levels; its size is called the interquartile range. The 
whiskers encompass all data points that fall in the range of 1.5 times the interquartile 
range. Outliers, i.e. data points beyond the whiskers, are indicated by a plus. In three 
cases, the distance D is so large that the box is outside the range of the plot, which is 
indicated by an upward arrow. This happens for the p-model because of a different 
standard deviation, for the rain cases because of the mean value. Additionally, a green 
triangle indicates the cases where the hypothesis of similarity of the distributions has not 
been rejected by the KS test. 

Fig. 11.The Kolmogorov-Smirnov distance of the distributions of the annual 95 percentile value between the measurement and its surrogates.
The box plots show the spread of the ten surrogates. The red line in the box plots represents the median. The box indicates the 25 and 75
percentile levels; its size is called the interquartile range. The whiskers encompass all data points that fall in the range of 1.5 times the
interquartile range. Outliers, i.e. data points beyond the whiskers, are indicated by a plus. In three cases, the distanceD is so large that the
box is outside the range of the plot, which is indicated by an upward arrow. This happens for the p-model because of a different standard
deviation, for the rain cases because of the mean value. Additionally, a green triangle indicates the cases where the hypothesis of similarity
of the distributions has not been rejected by the KS test.

(SIAAFT, IAAFT, PDF and FARIMA+IAAFT). SIAAFT
and IAAFT also perform well for runoff in the small catch-
ment (Burghausen), as does the FARIMA surrogate. Results
for the Cologne runoff data are quite similar, but with slightly
higherD-values so that in this case, the null hypothesis is re-
jected for all surrogates. For temperature, all surrogates be-
have similarly with only one non-rejection for the FARIMA
surrogate. For the p-model, the distributions of the annual
95th percentile differ most between surrogates and originals.

Summarizing the results for all four statistics analyzed
(figures not shown), the results for rainfall and temperature
show that for precipitation the distribution is most important,
while for temperature, the spectrum is most important; these
results reflect the nature of those measurements. The agree-
ment of the best surrogates is less good for temperature as
compared to rain. For the FARIMA method, the distribu-
tions of the original time series and the surrogates are quite
similar for temperature, but very different for precipitation.

The distributions of the yearly statistics of the p-model are
quite different for all of the methods. Except for the PDF

surrogates, the distribution of the annual mean values is well
matched for all surrogates. For the two runoff records, only
minor differences are found between the smaller and larger
river catchment size.

The distribution of the annual mean is the best reproduced
statistic (except for the PDF method). In general, the annual
statistics are best captured by the SIAAFT and the IAAFT
method.

5.5 Return values

The variability for the estimated 50-year return values
(RV50) in the small ensemble of surrogates is examined by
using boxplots. Figure 12 displays the difference of the
RV50 from each surrogate to that of the original time series.
Ideally, the RV50 estimated from the original time series is
within the range spanned by the surrogates, i.e. the boxplot
of the surrogates includes zero.

The estimates of RV50 for precipitation are best with
the two-statistic surrogates and also reasonable for the PDF
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Figure 12. Box plots of the deviations of the estimate of the 50-year return levels based on the 
measured data compared with their surrogates. For example, the negative differences for the 
p-model mean that the return levels of the surrogates is estimated to be too low. 
 

Fig. 12. Box plots of the deviations of the estimate of the 50-year return levels based on the measured data compared with their surrogates.
For example, the negative differences for the p-model mean that the return levels of the surrogates is estimated to be too low.

surrogates. All surrogates (except the Fourier and FARIMA
surrogates) are able to accurately estimate the return values
for the Potsdam daily mean temperature.

The RV50 estimates for the p-model are not satisfying for
any of the surrogates. They have a negative bias for the sur-
rogates. In none of the methods zero is encompassed within
the range of the whiskers, which maximally span 1.5 times
the interquartile range.

For runoff, the differences are larger but there is still quite
good agreement for the SIAAFT, IAAFT and the FARIMA +
IAAFT methods. For the runoff data at Burghausen, we find
SIAAFT, IAAFT, AAFT and FARIMA + IAAFT perform-
ing reasonably well. FARIMA and Fourier show a strong
negative bias. At Cologne, the negative bias of the Fourier
surrogate is even stronger.

The Fourier surrogates are out of range for all measure-
ments. The return values of the PDF surrogates have a posi-
tive bias for the smoother measurements (runoff and temper-
ature), because disregarding the autocorrelations decreases
the probability of extremes being clustered together in one
year; they are more evenly distributed among the years lead-
ing to more large values in the yearly maxima distribution.

In summary, the SIAAFT and IAAFT methods show rea-
sonable results for all real measurements for the 50 year re-
turn value estimates, followed by the FARIMA + IAAFT,
PDF, and AAFT methods. The Fourier and FARIMA algo-
rithms are in general not satisfying in this respect.

6 Discussion

6.1 Measurements

The best surrogates (IAAFT, SIAAFT and FARIMA +
IAAFT) based on the time series from the p-model repro-
duce the increment distribution and the structure functions
reasonably well. Contrary to this, with respect to the annual
statistics and return values this measurement was among of
the most difficult ones.

We speculate that this contrast is connected with the strong
intermittency, in the sense of the variance of the variance, of
this time series. In years with a high variance, it is possi-
ble to have extreme events that one would not expect based
on the mean variance over many years. The standard de-
viation of the annual standard deviation is about a third of
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the total variability and twice as high in the original realisa-
tion as in, for example, its IAAFT surrogates. Conversely,
the surrogates of the real historical measurements have more
variability of the annual variability as their measurements.
Furthermore, this deviation is only a few percent of the total
variability.

The temperature measurement is characterised by a strong
annual cycle. This cycle leads to a bimodal non-Gaussian
value distribution. Even if the distribution of its Fourier sur-
rogate is not closely matched, it is still bimodal. The incre-
ment distribution for a lag of 100 days (not shown) is also
bimodal. As Fourier surrogates are generated by the addi-
tion of many independent sine signals, they are often said to
have a Gaussian (increment) distribution because of the cen-
tral limit theorem. Here we see that this is not always true. In
this case, the annual cycle is so dominant that the distribution
becomes bimodal.

The time series with daily rain sums was one of the eas-
ier records. Most of its statistics, including its fat tailed
non-Gaussian increment distribution (not shown), were well
captured by all surrogates, except the Fourier and FARIMA
surrogates. Even the PDF surrogate was reasonably good,
which reflects the relatively low autocorrelations found in
this record.

Together with the p-model, the runoff measurement of the
Rhine at Cologne was the most difficult time series. All sur-
rogates showed large deviations in their structure function at
scales less than 100 days and their return values. We expect
that this is caused by the dynamics which is asymmetric in
time, with fast swells and slower decreases. The (S)IAAFT
surrogates are better than the FARIMA-based surrogates for
this runoff measurement. The runoff of the Salzach at gauge
Burghausen was easier to recreate, which may be due to its
smaller asymmetry.

The power spectra of the surrogates of the cumulus cloud
are considerably different from those of their corresponding
measurement. These surrogates also display deviations on
scales smaller than 10 s. The stratocumulus measurement
was one of the easier data sets, except that a bump in the
structure functions around a lag of 100 s was not picked up
by the FARIMA-based surrogates.

6.2 Multifractal modelling

The advantage of multifractal modelling is often seen to be
its ability to model non-Gaussian distributions and increment
distributions, see, e.g., Davis (1999). In this article, we have
shown that also the reverse can be true: that the inclusion of
the distribution in a generator based on Fourier or FARIMA
enables one to generate time series with almost the same in-
crement distributions and structure functions. In this respect,
it is to be expected that multifractal modelling and surrogate
techniques are similarly powerful. Surrogate techniques have
the advantage of enhanced accuracy for non-fractal signals:
the structure functions of five of the six real measurements

were more accurately reproduced by the surrogates due to
their non-fractal structure. Nonetheless, multifractal mod-
elling has the benefit of providing a simple mathematical de-
scription and having a strong mathematical basis.

The link between the distribution and the structure func-
tions suggests that the deviations found at small scales in the
SF may be caused by the limited influence of these small
scale variations on the distribution of the time series. This
conjecture can be tested using more accurate techniques to
generate surrogate time series, such as constrained random-
ization using global search algorithms such as simulated an-
nealing (Schreiber, 1998) or evolutionary algorithms (Ven-
ema, 2003).

6.3 Algorithms

The main grouping that can be made is between algorithms
that have only one statistic (PDF, Fourier and FARIMA sur-
rogates) and the ones with both spectral and distribution
statistics (SIAAFT, IAAFT, FARIMA + IAAFT and AAFT).
The latter category clearly generates better surrogates, i.e.
surrogates that fit better to the considered advanced statis-
tics. Overall, SIAAFT, IAAFT and FARIMA + IAAFT have
a similar quality. SIAAFT is slightly better than IAAFT
for temperature with respect to the increment distributions,
structure functions and 50-year return values. On the other
hand, there are even cases where the AAFT algorithm per-
forms best.

The choice of the best algorithm for a certain application
will involve some trial and error. The Fourier-based algo-
rithms are easily implemented in automatic data processing
procedures and can be generalised to higher dimensions. The
higher computational costs and the modest accuracy gains of
the SIAAFT method compared to IAAFT limits the utilisa-
tion of the SIAAFT algorithm to applications where only a
few high-quality time series or fields are needed. FARIMA-
based approaches are most interesting in cases where longer
records than the empirical ones are needed, because their full
parametric form can easily be used for longer simulations.

7 Conclusions and outlook

In this study, the statistical properties of a range of measure-
ments are compared with their surrogate time series. Seven
different measurements are analysed: a realisation from the
fractional integrated p-model (as an idealised record), histor-
ical time series of mean daily temperature, daily rain sums
and runoff from two rivers, and cloud measurements from
a stratocumulus and a cumulus field. Seven different algo-
rithms were utilised to generate surrogate time series, and
the most advanced ones were able to reproduce the empir-
ical distribution exactly and the empirical power spectrum
closely.
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Using this setup, we studied the similarity of the mea-
surements and their surrogates with respect to their power
spectra, increment distributions, structure functions, annual
statistics and return values.

The surrogates that reproduce both the power spectrum
and the distribution of the measurement are able to accurately
match the increment distributions and the structure functions
of the measurement, but this often does not hold for surro-
gates that only mimic the power spectrum of the measure-
ment. This illustrates the importance of using the distribu-
tion as well. Furthermore, an accurate reproduction of the
distribution is important in many applications. For instance,
for cloud fields, the distribution explains much of the radia-
tive transfer through clouds, while the structure of the fields
is mostly of second order importance (although still impor-
tant).

However, even the best surrogates do not have asymmet-
ric increment distributions, i.e., they cannot model dynamical
processes that are asymmetric in time. Furthermore, an im-
portant inaccuracy is that the structure functions deviate on
small scales.

Except for the deviations in the structure functions at small
scales, the surrogates are thus at par with records from mul-
tifractal processes for modelling self similarity. When time
series are not well characterised by fractal properties, the sur-
rogate approach has the advantage of allowing for arbitrary
spectra. For five of the six real measurements, we studied in
this paper, the surrogates achieved a higher accuracy for the
4th order structure function than an ideal multifractal model
would have realized without subtracting cycles. Multifrac-
tal modelling has the advantage of its strong analytical ba-
sis. The parametric (FARIMA) surrogate time series can be
seen as a compromise between these two extremes; they are
reasonably accurate, and have a clear mathematical model
behind them.

The annual statistics and the return periods estimated
by extreme value statistics are reproduced reasonably well.
However, in many cases, the surrogates were statistically sig-
nificantly different. Also here, the advantage of using the
distribution as well as the spectrum was demonstrated.

Although the structure functions of the p-model realisation
were reproduced with reasonable accuracy, its return values
were much off. We speculate that for extreme value statis-
tics, also the intermittency, in the sense of the variance of
the variance at a certain scale, of the time series is important.
Even if the better surrogates are able to handle the burst-like
intermittency of the cumulus and the rain measurement, they
do not reproduce the strong variance of the variance of the p-
model, and these types of surrogates have more of this type
of intermittency for the real measurements.

Even though the results in this study are encouraging, there
is still much room for further developments in the flexible
surrogate data framework. Schreiber and Schmitz (2000)
presented a multivariate IAAFT algorithm. With such an
algorithm, one could fill gaps or extend time series by us-

ing cross-correlations with other nearby measurements, es-
timating the spectra, cross spectra and distributions by us-
ing the available measurements. In addition, known cross-
correlations with cycles such as the El Niño could be taken
into account.

In Venema et al. (2006a), 3-dimensional surrogate cloud
fields are generated where the cloud water distribution is a
function of the height level. In the same way, it should be
possible to generate surrogate time series where the distribu-
tion depends on the season or phase of a cycle.

We are developing a new algorithm which can also take
the asymmetry of the dynamics into account. This will be
especially important for modelling, for instance, runoff, tur-
bulence and soil moisture. It seems to be possible, and should
be worthwhile, to develop an IAAFT-type algorithm in which
the wavelet transform is used instead of the Fourier trans-
form. Such an algorithm would be superior in reproducing
measurements from intermittent processes.
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