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Abstract. The inter-scale coupling in the dynamics of the
magnetic field in the Earth’s magnetospheric cusp is studied
with the technique of transfer entropy. This is a non-linear
data analysis technique conceived to determine which is the
process that plays the role of the “dynamical driver” between
two processes interacting.

The time series of the magnetic field components mea-
sured along the trajectory of a spacecraft through the cusp
are decomposed via continuous wavelets, so a time series of
the square modulus of the wavelet coefficients may be asso-
ciated to each scalèconsidered. The coupling between to
two nearby scales is studied, with the purpose of singling out
turbulent cascade directions from large to small scales and
viceversa.

Preliminary physical conclusions are proposed.

1 Introduction

In fluid as well as in magneto-hydrodynamic turbulence, the
presence of an inter-scale dynamics shows up clearlyFrisch
(1995): excitations on many different space scales interact
with each other. Non-linear terms in the equations govern-
ing turbulent systems are responsible for the inter-scale dy-
namics. For instance, in the fluid case three-wave interaction
and cascades are all phenomena governed by such non-linear
terms in the Navier-Stokes equations.

This paper is devoted to the study of the inter-scale dy-
namics of the turbulent magnetic field in the Magnetosphere
of the Earth, in particular to the study of the verse of cascade
processes taking place in the turbulent magnetic field in the
magnetospheric cusp (MC).

The traditional scenario of fluid turbulence predicts that
larger scale excitations give rise to smaller ones via fragmen-
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tation, which is referred to as direct cascadeFrisch(1995).
The opposite phenomenon, the inverse cascade, in which
structures aggregate giving rise to larger scale eddies, seems
to be confined to theoretically well defined situations, as the
2-D turbulence described inKraichmann and Montgomery
(1980). However, there are experimental indications of di-
rect and inverse cascade processes in the magnetic field of
the magnetospheric turbulent boundary layer, as Savin and
his co-Authors showed inSavin et al.(2004). This motivated
the present research, in which a new data analysis technique,
introduced inSchreiber(2000) and refined inKeiser and
Schreiber(2002), here referred to as transfer entropy anal-
ysis (TEA), is adapted to study the “cascades” in the magne-
tospheric turbulence.

The TEA is based on the principle that interacting pro-
cesses exchange information entropyHaken(1983): given
two interacting processesX and Y , the transfer entropy
TX→Y from X to Y will measure the influence ofX on Y ,
so that making a comparison between the quantitiesTX→Y

andTY→X one should be able to say which is the process
more strongly influencing the other.

The TEA may be exploited to determine in which sense the
turbulent cascade evolves, whether direct or inverse. Indeed,
assume to deal with a time seriess (t) describing a turbulent
evolution via measurements made by a probe moving very
slowly through the turbulent flux, so that some definite (prob-
ably unknown) relationship exists between the time scales in
s (t) and the space scales in the field theory. Suppose to be
able to extract a collection of time seriesε` (t) describing
how s (t) appears at each time scale`. Then, apply the TEA
to couples of time seriesε` (t) andε`′ (t) with ` > `′: in this
case, if the TEA indicates thatε`′ influencesε`, a diagnosis
of direct cascade may be done, while if the smaller scale evo-
lution ε` influences the larger scale evolutionε`′ , one might
state to be facing an inverse cascade process.

Actually, more complex mechanisms could be invoked to
explain turbulent fluctuations in a plasma, as those described
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Figure 1. A pictorial vision of the axial-poloidal decomposition of the vector ~B
as measured by the POLAR satellite along its trajectory.
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Fig. 2. The three components of the vectorB as measured by the
POLAR satellite along its trajectory.

in Chang et al.(2004) for the dynamics of structures aris-
ing from resonances. In those scenarios no definte verse in
the cascades appear, one rather speaks about multi-scale co-
herent structures in interaction: confuse pictures about the
verse of cascades emerging from the TEA could support
those richer scenarios (which seems to be the case, indeed,
in these preliminary results).

The data used here are magnetic field measurements col-
lected by the instruments on board of the NASA POLAR
spacecraftRussel et al.(1995). The time series considered
is that of the three components ofB measured in the orbit
segment starting at 11:55 UT and ending at 12:44 UT, on 11
April 1997. Measurements were taken in the northern cusp
region in the magnetic latitudes range 59.87◦

− 67.95◦, and
from 13:40 to 14:17 MLT. These time series have been elab-
orated also inYordanova et al.(2005). If the trajectory of the

spacecraft isxS (t) then the time series at hand are related to
the local fields as

B (t) = B (xS (t) , t) . (1)

The time series analysed are described in some detail in
Yordanova et al.(2005) andYordanova et al.(2004). As de-
scribed inYordanova et al.(2005), these magnetic fluctua-
tions are anisotropic, since the turbulent statistical and spec-
tral features along the average field〈B〉 (axial direction) and
perpendicular to it (poloidal plane) are different. Expecting
this anisotropy to lead to different cascade behaviours in the
axial and poloidal directions, here we apply the TEA sepa-
rately to the time series of the axial component

B0 =
B · 〈B〉

|〈B〉|
(2)

and to the ones of the two poloidal components indicated as
B1 andB2, so that the total field reads

B (t) = B0 (t) ê// + B1 (t) ê⊥1 + B2 (t) ê⊥2,

ê// =
〈B〉

|〈B〉|
, 〈B〉 · ê⊥1 = 0, 〈B〉 · ê⊥2 = 0,

ê⊥1 · ê⊥2 = 0.

(3)

The axial-poloidal decomposition is illustrated in Fig. 1.
Note that〈B〉 is in principle an ensamble average and might
depend on time for nonstationary evolutions. In practice, this
will be calculated as the time average ofB instead, hence
will be a constant vector. In all our calculations, we assume
the equivalence of ensemble and time statistics (stationar-
ity) and space and time statistics (Taylor hypothesis)Frisch
(1995). Plausibility reasons for accepting this hypotheses in
the same data segments usede here were given inYordanova
et al.(2004).

In Fig. 2 the three time seriesB0 (t), B1 (t) andB2 (t) are
depicted. It is visible how

〈Bi〉 � 〈B0〉 . (4)

At a glance, the poloidal components appear to be more in-
termittent thanB0.

2 Transfer entropy and the magnetic turbulence

The transfer entropy from a processY to a processX in the
time lapseτ is the quantity of information that the state ofX
has at the timet+τ due only to the state ofY at the timet
Schreiber(2000). If the processesX represented byx (t) and
Y represented byy (t) are treated as probabilistic evolutions,
the transfer entropy representing the dynamical influence of
the processY on the processX is defined as

TY→X (τ ) =

=
∑
x(t)
x(t−τ)
y(t−τ)

p (x (t + τ) , x (t) , y (t)) log2

(
p (x (t + τ) |x (t) , y (t))

p (x (t + τ) |x (t))

)
, (5)
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where p (x (t+τ) , x (t) , y (t)) is the joint probability of
having the statesx (t) and y (t) at the time t and
x (t+τ) at time t+τ , while p (x (t+τ) |x (t) , y (tτ )) and
p (x (t+τ) |x (t)) are conditional probabilities. In the defi-
nition (5) the delayτ is the only time parameter on which
TY→X depends if the processes are stationary.

The comparison between the two quantitiesTY→X (τ ) and
TX→Y (τ ) will tell whether the processY influencesX more
than vice-versa: ifTY→X ≥ TX→Y this is the case. Here the
differential transfer entropy (DTE) fromY toX

1TY→X
def
= TY→X − TX→Y (6)

is used: when1TY→X>0 the dynamical influenceY → X

prevails on the dynamical influenceX → Y .
The usefulness ofTY→X in the study of the inter-scale dy-

namics of the magnetospheric turbulence is clear once the
two time seriesx (t) andy (t) in (5) and (6) are two time se-
riesε` (t) andε`′ (t) describing the turbulent evolution at two
different scales̀ and`′. Hence, the quantity

T`→`′ (τ ) =

=
∑
ε`′ (t)
ε`′ (t−τ)
ε`(t−τ)

p (ε`′ (t+τ) , ε`′ (t) , ε` (t)) log2

(
p (ε`′ (t+τ) |ε`′ (t) , ε` (t))

p (ε`′ (t+τ) |ε`′ (t))

)
(7)

can be defined, and similarlyT`′→` (τ ). Considering that in
the phenomenon of direct cascade the larger structures deter-
mine the smaller ones, while in the case of inverse cascade
the opposite takes place, one can use the DTE

1T`→`′ (τ ) = T`→`′ (τ )− T`′→` (τ ) , ` > `′ (8)

to determine the prevailing verse of cascade processes: when
1T`→`′>0 the direct cascade from̀to `′<` is taking place,
while if 1T`→`′<0 an inverse one is at work.

It’s important to say that analysing the time series col-
lected along the POLAR trajectory and treating them as prob-
abilistic evolutions we are not looking at the single direct or
inverse cascade event of “eddies” crumbling or coalescing:
while crossing the MC the spacecraft builds upB (t) visiting
different points of the plasma flow. Different cascade events
are then put together: the verse of the cascade indicated by
the TEA will then be simply the statistically prevalent verse.

2.1 The scale variables

In order to single out the excitations at given scales, the time
seriesB (t) is wavelet-transformed by using a Morlet wavelet
as the mother wavelet of the continuous transform:
B̃
(i)
` (t) =

1
√
`

∫
I

Bi
(
t ′
)
ψ∗

(
t ′ − t

`

)
dt ′,

ψ (x) = π−
1
4 exp

(
iω0x −

1

2
x2

)
.

(9)

whereI is the time interval on which the seriesB (t) is de-
fined. Then the square modulus of this complex time series
B̃
(i)
` (t) is used:

ε
(i)
` (t)

def
=

∣∣∣B̃(i)` (t)

∣∣∣2 . (10)

All the parameter values chosen for the analysis are justified
in AppendixA. Once the definition (10) is given, the quantity
T
(i)

`→`′
is calculated by assuming the evolutionsε(i)` andε(i)

`′
to

be describing stationary processes, and evaluating the proba-
bilities as the normalized histograms. These probabilities are
directly inserted in (7).

2.2 Adjacent scale TEA

The transfer entropiesT (i)
`→`′

andT (i)
`′→`

can be calculated for
any couple of scales

(
`, `′

)
, but one choice seems particu-

larly meaningful for the study of cascade processes. Since in
the traditional picture of turbulence the most important inter-
scale coupling giving rise to cascade processes takes place
between fluctuations at two nearby scales, a sensible choice
for the couple

(
`, `′

)
is `′=`−d`. It is likely that also other

couplings may take place, between largely different scales
too. This will be the object of future studies.

Due to the numerical implementation of the continuous
wavelet transform (9), the differenced` will rather be in-
tended as

d`n = `n+1 − `n,

being{`n} the discrete sequence of scales adopted in the dis-
cretization of the continuous transform (9). In AppendixA
the expression for{`n} is given together withd`n in (A4) and
(A5).

The quantitiesT (i)`→`−d` (τ ) and T (i)`−d`→` (τ ) have been
constructed by applying (7) holding the delayτ fixed as twice
the sampling timedt=0.12 s. This choice ofτ = 2dt cor-
responds to analysing the dynamics on the shortest possible
time within which an interaction may be captured by study-
ing the given time series. Once we’ve done so, the differen-
tial entropy

1T
(i)
`→`−d` = T

(i)
`→`−d` (τ )− T

(i)
`−d`→` (τ ) (11)

depends only on the scale`, and can be studied as a function
1T

(i)
`→`−d` (`). Such an analysis is expected to define those

intervals of scales in which direct cascade processes prevail
and those in which the opposite takes place. The anisotropy
described inYordanova et al.(2005) is expected to possi-
bly give different behaviours of1T (i)`→`−d` (`) for i=0 (axial
component) ori=1,2 (poloidal components).

In order to find out synthetically what the TEA analy-
sis may teach about the magnetic turbulence in the cusp,
1T

(i)
`→`−d` will be presented rather as a function of the
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Figure 2. The three components of the vector ~B as measured by the POLAR
satellite along its trajectory.

Figure 3. Comparison between the power spectrum P
(0)
s (f) of the axial

component B0 (top) and the DTE �T
(0)
`!`�d` (f) (bottom). fL and fR are the

limits of the turbulent cascade determined in [9]. In the bottom picture the red
line is �T (0)`!`�d` (f) from the real data, while the black smooth line is its

polynomial �t G(0)20 (f). In the spectrum, note a local (extremely weak) hump at
� 0:2 Hz, local bumps at � 0:8 Hz, � 1 Hz and fR (the latter is the most visible

feature), and three slight bumps at higher frequencies. In the �tted curve
G(0)20 (f) note the local maxima at � 0:2 Hz, � 1 Hz and � 2 Hz, and the local

minima between 0:5 Hz and 0:6 Hz, and at about fR.
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Fig. 3. Comparison between the power spectrumP (0)s (f ) of the

axial componentB0 (top) and the DTE1T (0)
`→`−d` (f ) (bottom).

fL and fR are the limits of the turbulent cascade determined in
Yordanova et al.(2005). In the bottom picture the red line is

1T
(0)
`→`−d` (f ) from the real data, while the black smooth line is

its polynomial fitG(0)20 (f ). In the spectrum, note a local (extremely
weak) hump at∼0.2 Hz, local bumps at∼0.8 Hz, ∼1 Hz andfR
(the latter is the most visible feature), and three slight bumps at

higher frequencies. In the fitted curveG(0)20 (f ) note the local max-
ima at∼0.2 Hz,∼1 Hz and∼2 Hz, and the local minima between
0.5 Hz and 0.6 Hz, and at aboutfR .

frequency

f (`) =

ω0 +

√
ω2

0 + 2

`
(12)

of the Fourier component corresponding to the time-scale
` of the wavelet analysis. Hence1T (i)`→`−d` (f ) will be

compared with the Fourier power spectrumP (i)s (f ) of
the i-th component ofB (t), so that the physical features
of 1T (i)`→`−d` (f ) will be straightforwardly compared with
those already interpreted inYordanova et al.(2005).

2.3 Results

The time series under exam was studied byYordanova et al.
(2004) and in Yordanova(2005) in terms of its multifrac-
tal properties as far as the magnetic energy|B|

2 was con-
cerned. InYordanova et al.(2005) the spectral properties of
the time seriesB0 (t), B1 (t) andB2 (t) were analysed, to-
gether with the PDFs as appearing at different (time) scales.
The results found there appear to be in reasonable agreement
with the picture described by Chang and his co-authors in
Chang et al.(2004): the spacecraft is crossing a “gas” of fil-
amentary current “structures” interacting with each other via
coalescence and fragmentation, giving rise to inverse and di-

Figure 4. Comparison between the power spectrum P
(1)
s (f) of the �rst poloidal

component B1 (top) and the DTE �T
(1)
`!`�d` (f) (bottom). fL and fR are the

limits of the turbulent cascade determined in [9]. In the bottom picture the red
line is �T (1)`!`�d` (f) from the real data, while the black smooth line is its

polynomial �t G(1)20 (f). In the spectrum, note a local (extremely weak) hump at
� 0:2 Hz, local bumps at � 0:8 Hz, � 1 Hz and fR (the latter is the most visible
feature). Three slight bumps at higher frequencies. In the �tted curve G(0)20 (f)
note the local maxima at � 0:7 Hz, � 2 Hz and � 3 Hz and the local minima

slightly before fR and between 2 Hz and 3 Hz..
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Fig. 4. Comparison between the power spectrumP (1)s (f ) of the

first poloidal componentB1 (top) and the DTE1T (1)
`→`−d` (f )

(bottom). fL andfR are the limits of the turbulent cascade deter-
mined inYordanova et al.(2005). In the bottom picture the red line

is1T (1)
`→`−d` (f ) from the real data, while the black smooth line is

its polynomial fitG(1)20 (f ). In the spectrum, note a local (extremely
weak) hump at∼0.2 Hz, local bumps at∼0.8 Hz,∼1 Hz andfR
(the latter is the most visible feature). Three slight bumps at higher

frequencies. In the fitted curveG(0)20 (f ) note the local maxima at
∼0.7 Hz, ∼2 Hz and∼3 Hz and the local minima slightly before
fR and between 2 Hz and 3 Hz.

rect cascade events respectively. The result presented here as
obtained from the TEA will confirm and enrich that picture
with the indication of the statistically prevalent verse of the
fragmentation-coalescence interactions.

The results have been checked via a surrogate data test,
described in2.3.2.

2.3.1 Quantities from real data

The Fourier spectra of the components ofB (t) were cal-
culated inYordanova et al.(2005) as power laws with two
“breaks” at the frequencies

fL∼eq0.06 Hz, fR ∈ [1 Hz,2 Hz] . (13)

The frequenciesfL andfR may be interpreted as delimit-
ing the inertial range of the turbulent cascade: according to
this interpretation, the energy would be injected at the scale
` (fL) and cascade down to the scale` (fR), where it is dis-
sipated. The frequencyfR is considered as the cusp ion cy-
clotron frequency, wherefL is rather assimilated to the Solar
Wind ion cyclotron frequency, so to say that the harmonic
components ofB (t) with f<fL are governed by the flux of
the Solar Wind. This Solar Wind driving is mainly affecting
the axial componentB0 (t).

The behaviour of1T (i)`→`−d` (f ) is presented in the Fig-
ures from 3 to 5, while Fig. 6 refers to the excitations in the
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Figure 5. Comparison between the power spectrum P
(2)
s (f) of the second

poloidal component B2 (top) and the DTE �T
(2)
`!`�d` (f) (bottom). fL and fR

are the limits of the turbulent cascade determined in [9]. In the bottom picture
the red line is �T (2)`!`�d` (f) from the real data, while the black smooth line is its

polynomial �t G(2)20 (f). In the spectrum, note a local (extremely weak) hump at
� 0:2 Hz, local bumps at � 0:9 Hz and fR (the latter is the most visible

feature). In the �tted curve G(0)20 (f) note the local maxima at � 0:3 Hz, � 1 Hz
and � 2 Hz and 3 Hz, and the local minima at � 0:6 Hz, slightly before fR and

slightly after 2 Hz.
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Fig. 5. Comparison between the power spectrumP (2)s (f ) of the

second poloidal componentB2 (top) and the DTE1T (2)
`→`−d` (f )

(bottom). fL andfR are the limits of the turbulent cascade deter-
mined inYordanova et al.(2005). In the bottom picture the red line

is1T (2)
`→`−d` (f ) from the real data, while the black smooth line is

its polynomial fitG(2)20 (f ). In the spectrum, note a local (extremely
weak) hump at∼0.2 Hz, local bumps at∼0.9 Hz andfR (the latter

is the most visible feature). In the fitted curveG(0)20 (f ) note the lo-
cal maxima at∼0.3 Hz,∼1 Hz and∼2 Hz and 3 Hz, and the local
minima at∼0.6 Hz, slightly beforefR and slightly after 2 Hz.

poloidal intensityBn

Bn =

√
B2

1 + B2
2. (14)

Looking at the behaviours of1T (i)`→`−d` with f (red plots
in the bottom panels of Figs. from 3 to 6) it is difficult to
distinguish a tendency or even to establish clearly for which
frequencies the sign of1T (i)`→`−d` points towards a direct or
an inverse cascade. All is possible to state at first glance
is that1T (i)`→`−d` goes to zero well outside the interval of
frequencies[fL, fR]

f � fL, f � fR ⇒ 1T
(i)
`→`−d` (f )∼eq0 (15)

and that it oscillates around zero without a well apparent
sign. The first physical conclusion should be that events of
coalescence and fragmentation of the turbulent structures are
both present and probably mixed at all the scales.

In order to target more clearly some “theoretical” be-
haviour of1T (i)`→`−d` (f ), it is then tried to draw a “fitting
curve” through the values calculated from the data (black
plot in the bottom panels of Figs. from 3 to 6). AnN de-
gree polynomial fit

G(i)N (f ) =

N∑
k=0

g
(i)
k f

k (16)

Figure 6. Comparison between the power spectrum P
(n)
s (f) of the poloidal

intensity Bn (top) and the DTE �T
(n)
`!`�d` (f) (bottom). fL and fR are the limits

of the turbulent cascade determined in [9]. In the bottom picture the red line is
�T

(n)
`!`�d` (f) from the real data, while the black smooth line is its polynomial

�t, G(n)20 (f). In the spectrum, note the local (extremely weak) hump at � 0:2 Hz,
local bumps at � 0:8 Hz, � 1 Hz and fR (the latter is the most visible feature).
In the �tted curve G(0)20 (f) note the local hump at � 0:2 Hz, the local maxima at

� 0:8 Hz, slightly after fR and slightly before 3 Hz, and the local minima
slightly before fR and at � 2 Hz.
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Fig. 6. Comparison between the power spectrumP (n)s (f ) of the

poloidal intensityBn (top) and the DTE1T (n)
`→`−d` (f ) (bottom).

fL and fR are the limits of the turbulent cascade determined in
Yordanova et al.(2005). In the bottom picture the red line is

1T
(n)
`→`−d` (f ) from the real data, while the black smooth line is its

polynomial fit,G(n)20 (f ). In the spectrum, note the local (extremely
weak) hump at∼0.2 Hz, local bumps at∼0.8 Hz,∼1 Hz andfR
(the latter is the most visible feature). In the fitted curveG(0)20 (f )

note the local hump at∼0.2 Hz, the local maxima at∼0.8 Hz,
slightly afterfR and slightly before 3 Hz, and the local minima
slightly beforefR and at∼2 Hz.

is hence superimposed to the values of1T
(i)
`→`−d` (f ). Then,

the physical conclusions are drawn from the analysis of the
smooth, more readable plotG(i)N (f ). The degreeN is fixed as
N=20, because this is the best value to satisfy the condition
(15)

f � fL, f � fR ⇒ G(i)20 (f )∼eq0. (17)

The details of the comparisons between the behaviour of
theG(i)20s and the spectra are reported completely in the cap-
tions of the figures.

In general, it can be stated that the sign ofG(i)20 (f ) is
rather well defined in the inertial interval[fL, fR], where in-
deed it is pointing towards positive1T (i)`→`−d` (f ), i.e. direct
cascade:

fL < f < fR ⇒ G(i)20 (f ) > 0. (18)

Comparing the plots ofP (i)s (f ) andG(i)20 (f ) one discovers

that the stationary points ofG(i)20 (f ) correspond roughly to

(more or less weak) local “bumps” onP (i)s (f ), denoting
the correspondence between local maxima of the differen-
tial transfer entropy and spectral features. A minimum of
G(i)20 (f ) is located slightly before the “break” frequencyfR.

As far as the anisotropy between the axial and the poloidal
directions is concerned, the most noticeable difference is that

www.nonlin-processes-geophys.net/14/153/2007/ Nonlin. Processes Geophys., 14, 153–161, 2007
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Figure 7. Comparison of �T (0)`!`�d` and G
(0)
20 as calculated from the time series

B0 (t) and from the surrogate data associated to it. From top to bottom: real
time series, AAFT surrogate data (series �aaft_B0�), phase randomized surrogate
data (series �random_B0�) and a Gaussian noise (series �B0_gaussnoise�).

21

Fig. 7. Comparison of1T (0)
`→`−d`

and G(0)20 as calculated from
the time seriesB0 (t) and from the surrogate data associated to it.
From top to bottom: real time series, AAFT surrogate data (series
“aaft B0”), phase randomized surrogate data (series “randomB0”)
and a Gaussian noise (series “B0gaussnoise”).

G(0)20 is smaller thanG(1,2)20 andG(n)20 , so that along the poloidal
plane the “direct cascade” events are more importantly preva-
lent than alongê//. Another difference betweenG(0)20 and

G(1,2,n)20 is thatG(1,2,n)20 have an enhancement at frequencies
higher thanfR, going to zero then, this increase being much
smaller forG(0)20 .

Figure 8. Comparison of �T (1)`!`�d` and G
(1)
20 as calculated from the time series

B1 (t) and from the surrogate data associated to it. From top to bottom: real
time series, AAFT surrogate data (series �aaft_B1�), phase randomized surrogate
data (series �random_B1�) and a Gaussian noise (series �B1_gaussnoise�).
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Fig. 8. Comparison of1T (1)
`→`−d`

and G(1)20 as calculated from
the time seriesB1 (t) and from the surrogate data associated to it.
From top to bottom: real time series, AAFT surrogate data (series
“aaft B1”), phase randomized surrogate data (series “randomB1”)
and a Gaussian noise (series “B1gaussnoise”).

2.3.2 Surrogate data test

In order to check how reliable these results may be consid-
ered, a surrogate data test for the nonlinearity of the dynam-
ics producing them may be used. Indeed, nonlinear couplings
should be the origin of cascades and coalescence events.

The results of the surrogate data test are presented in Fig-
ures from 7 to 9.
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For every time series analysed one may produce the surro-
gate data described inTheiler et al.(1992), in particular the
phase-randomized surrogate data (indicated in the Figures as
“random”) and the Amplitude Adjusted Fourier Transform
surrogate data (indicated in the Figures as ’aaft’). The phase
randomized data are constructed as the Gaussian linear pro-
cess with the same power spectrum of the original real data,
while the ’aaft’ data are supposed to mimic a process ob-
tained from the linear Gaussian one with the same power
spectrum of the original real data via a non-linear transfor-
mation. We have also produced pure Gaussian noises without
any relationship with the real data.

The results of the surrogate data test is indicating that
the quantities1T (i)`→`−d` and G(i)20 of the real data are not
very much different from those obtained from surrogate data,
apart in the Gaussian noise case. On one hand, consider-
ing that the “essentially linear” time series constructed via
the “random” or via the “aaft” procedures should have zero
1T

(i)
`→`−d` everywhere, this result should be interpreted in

stating that1T (i)`→`−d` andG(i)20 are not meaningfully differ-
ent from zero, in general, so that one might conclude

1T
(i)
`→`−d` (f )∼eq0, G(i)20 (f )∼eq0 ∀ f ∈ [0.006 Hz,4 Hz] .

(19)

This would point towards an equivalence between the occur-
rence of the direct and inverse cascade events registred dur-
ing the flight of the spacecraft.

On the other hand, since both the “aaft” as well as the
phase-randomized “random” surrogate data have the same
power spectrum as the real ones, and sinceG(i)20 (f ) is seen

to have a rather good correlation with theP (i)s (f ) features,
there is no surprise in the apparently deluding results of
Figs. from 7 to 9.

3 Discussion

The Earth’s MC has always been known as a region of highly
turbulent plasma. The presence of plasma turbulence pro-
duces a state of turbulence in the local magnetic field as well,
due to the strict coupling between matter and field in a con-
ducting fluid. The turbulent magnetic field is then expected
to show those non-linear phenomena of turbulent systems as
energy cascades due to inter-scale couplings.

In principle, processes of fragmentation of magnetic struc-
tures into smaller ones, and coalescence of magnetic struc-
tures forming bigger size excitations are both possible. In
the present paper the transfer entropy introduced inSchreiber
(2000) has been used to establish the existence of a prevalent
sign in these cascade processes. The quantity studied is the
differential transfer entropy1T (i)`→`−d` telling how much the
dynamical driving of thè -sized structures onto the(`−d`)-
sized structures is stronger than the opposite one. The causal

Figure 9. Comparison of �T (2)`!`�d` and G
(2)
20 as calculated from the time series

B2 (t) and from the surrogate data associated to it. From top to bottom: real
time series, AAFT surrogate data (series �aaft_B2�), phase randomized surrogate
data (series �random_B2�) and a Gaussian noise (series �B2_gaussnoise�).
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Fig. 9. Comparison of1T (2)
`→`−d`

and G(2)20 as calculated from
the time seriesB2 (t) and from the surrogate data associated to it.
From top to bottom: real time series, AAFT surrogate data (series
“aaft B2”), phase randomized surrogate data (series “randomB2”)
and a Gaussian noise (series “B2gaussnoise”).

delay considered isτ=0.24 s, as long as twice the sampling
time of the data.

The plot of1T (i)`→`−d` as a function of the frequency is
indicating the existence of a frequency interval within which
a direct cascade regime should be prevalent. This frequency
interval is slightly wider than the inertial interval obtained
in Yordanova et al.(2005) studying the power spectrum
of the magnetic axial and poloidal excitations. The plots
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of 1T (i)`→`−d` (f ) and its polynomial fitG(i)20 (f ) show be-
haviours rather correlated with the (weak) features appearing
in the power spectrumP (i)s (f ). This correlation between the
DTEs and the power spectra is showing up in all the com-
ponents ofB, even if the inter-scale coupling taking place
within the causal delay considered here is stronger along the
poloidal directions.

The surrogate data test used criticizes strongly the reliabil-
ity of the values1T (i)`→`−d` found here, and in2.3.2.this has
been used to guess (15). However, strictly speaking, the fact
that1T (i)`→`−d` andG(i)20 for real and surrogate data are not
very much different does not mean that (15) is satisfied. In-
stead, it means that the approach based on the wavelet trans-
form and the transfer entropy notion is not sufficient to con-
clude whether we are dealing with the cascade process or
linear Gaussian process (random) or nonlinearly transformed
Gaussian process (aaft). It is worth reminding that the oc-
currence of dual cascades, i.e. regimes in which direct and
inverse cascade events are well possible, has been repeatedly
predicted in the literature about magnetic turbulence in space
plasmas. In particular, one may quote the works by Chang
(seeChang et al.(2004) and those quoted inYordanova et al.
(2005)), claiming for a regime of very complex interactions
among coarse-grained field and current configurations; the
paperSavin et al.(2004), in which single events of direct and
inverse cascades are targeted in scalograms; the plasma sim-
ulationsInternational School ASSE(2006) shown by Shukla
in his invited paper in L’Aquila for the Summer School ASSE
2006.

Some more final comments should be considered.
First of all, the results presented here are still very prelim-

inary ones, obtained via still developing tools (the applica-
tion of transfer entropy to wavelet-analysed geospace data is
rather new, as far as the Authors are aware of).

Continuous wavelet transform, used in our analysis, is a
redundant transform, which means that the wavelet trans-
form coefficients are correlated. This property might affect
the transfer entropy calculations. We plan to use the discrete
wavelet transform but this can be done at the expense of fre-
quency (scale) resolution.

The data collected here are obtained as measurements
along the satellite trajectory, as written in (1): this means that
we are using the identification of time and space statistics of
the turbulent field, which might be a naı̈ve point of view.
Many-point simultaneous measurements should be used in
future investigations, to give a more rigorous and reliable
idea of the space configuration of the field. In the present
paper one cannot claim to be calculating the proper ensem-
ble statistics defining the transfer entropies theoretically. It’s
only possible to interpret the indications of1T (i)`→`−d` (f ) as
valid on the set of cascade events encountered by the space-
craft along its trajectory.

These are sample results obtained with very few statistics:
we are actually facing a highly variable system (the magneto-

plasma turbulence in the Earth’s MC) with a simple case
study.

One should mention that the Earth’s MC is one the most
highly variable and complicated region of the geospace: in
order to refine the mathematical tools adopted here it will be
necessary to try them on the simpler cases of synthetic tur-
bulence data (in which one completely knows the verse of
the “cascades” occurring) and of real data collected in less
complicated, and more well known, regions of the Helio-
geospace.

Last but not least, all these calculations should be repeated
for many values of the causal delayτ . This should allow
to explore the entropies relative to processes occurring in a
lapse of time equal toτ`, the typical time of the energy trans-
fer from` to `−d`.

Appendix A

Choosing the wavelet analysis parameters

The wavelet analysis technique is extensively used in the
study of fluid turbulence and irregular mediaFarge et al.
(1999).

The continuous wavelet transform coefficients are time se-
ries of the same length and sampling of the original one, for
all the scales considered. The definition of the transform is
formula (9). The Morlet function is chosen as mother wavelet
because it is very good for the time and frequency resolu-
tion, matching the minimum uncertainty condition. Being
σf andσt the frequency and time spread respectively, one
has indeed:

ω2
0 � 1 ⇒ σf σt =

1

4π
. (A1)

Here we have chosenω0 = 6, so thatψ (x) turns out to fulfill
the admissibility conditionFarge(1992).

In principle the transform (9) allows for a continuous spec-
trum of the scales̀, but a discretisation is done for pursu-
ing the numerical implementation of itTorrence and Compo
(1998). The scales admitted are given by the collection

`n = 2
n
V `min, n ∈ N, (A2)

beingV a positive integer referred to as number of voices,
so that̀ n+V=2`n. If V is chosen suitably the wavelet con-
structed are quasi-orthogonal, and select quasi-independent
scales. Some mathematical resultsDaubechies(1992) and
Mallat (1998) indicate that withV≥4 this property is ful-
filled. Here we have chosenV=8.

The minimum scalè min is fixed as twice the sampling
time

`min = 2dt = 0.24 s. (A3)

With our parameters one obtains the scale sequence

`n = 2
n
8 · 0.24 s, n ∈ N. (A4)
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The minimal difference of scales distinguished is then:

d` (n) = `n+1 − `n = 2
n
8

(
2

1
8 − 1

)
· 0.24 s= 2

n
8 × 0.02 s,

(A5)

This will be thed` separating the two adjacent scales in our
analysis. It grows exponentially withn.
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