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Abstract. In this study, a two-step probabilistic downscaling
approach is introduced and evaluated. The method is exem-
plarily applied on precipitation observations in the subtropi-
cal mountain environment of the High Atlas in Morocco. The
challenge is to deal with a complex terrain, heavily skewed
precipitation distributions and a sparse amount of data, both
spatial and temporal. In the first step of the approach, a trans-
fer function between distributions of large-scale predictors
and of local observations is derived. The aim is to fore-
cast cumulative distribution functions with parameters from
known data. In order to interpolate between sites, the sec-
ond step applies multiple linear regression on distribution
parameters of observed data using local topographic infor-
mation. By combining both steps, a prediction at every point
of the investigation area is achieved. Both steps and their
combination are assessed by cross-validation and by splitting
the available dataset into a trainings- and a validation-subset.
Due to the estimated quantiles and probabilities of zero daily
precipitation, this approach is found to be adequate for appli-
cation even in areas with difficult topographic circumstances
and low data availability.

1 Introduction

Downscaling of climate data is an important issue in order to
obtain high-resolution data desired for most applications in
meteorology and hydrology and to gain a better understand-
ing of local climate variability (e.g.Maraun et al., 2010).
Although climate data is often required with high resolu-
tion, most datasets are provided as gridded data (General Cir-
culation Model (GCM) output or reanalysis data) or some-
times sparsely distributed observations at weather stations.
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Currently available GCM datasets have a spatial resolution
of typically 150–300 km (Meehl et al., 2007) and reanaly-
sis datasets of the order of 100–200 km (Kistler et al., 2001;
Uppala et al., 2005). Due to their low spatial resolution, such
GCM and reanalysis datasets are missing necessary informa-
tion on the actual regional characteristics, e.g. to reproduce
effects of strong height gradients or complex topography like
in mountainous areas (Wilby et al., 2004).

To obtain the desired resolution for impact studies, infor-
mation from large scale has to be transferred to local scale.
Further, it is desirable to extrapolate punctual climate ob-
servations to a regular grid. Several different downscaling
techniques have been developed in recent decades (cf. for re-
views e.g.Fowler et al., 2007; Maraun et al., 2010; Wilby et
al., 1998; Wilby and Wigley, 1997). They may be roughly
divided into dynamical and statistical approaches. Some
studies also present a combination of both approaches (e.g.
Fuentes and Heimann, 2000; Pinto et al., 2010). Dynami-
cal downscaling uses in most cases Regional Climate Mod-
els (RCMs) nested into GCMs with a higher spatial resolu-
tion. These have typical resolutions of 10–50 km, sometimes
down to 2–3 km and focus on the region of interest. Statisti-
cal downscaling uses the fact that local climate is influenced
by global climate and local surface characteristics. The re-
lation between those two factors is described by statistical
functions, which can be obtained e.g. by regression. Advan-
tages against dynamical downscaling are low computational
costs and straightforward adjustment of approaches to new
regions or variables. In general, statistical downscaling tech-
niques relate large-scale variables, called predictors, and lo-
cal variables, called predictands. The different methods are
usually categorized into the three main groups “weather clas-
sification”, “regression models” and “weather generators”,
which can be used both separately and combined.

The application of weather classification is helpful to
group days, especially if the chosen variable is discontin-
uous in space and time.Wilby (1994) obtains coherent
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results for mean rainfall characteristics in southern England
with weather classification techniques. For our investigation
area, a statistical dynamical approach considering circula-
tion weather types is presented inHübener and Kerschgens
(2007).

Linear regression models perform well for continuous
variables like temperature.Huth (1999) combines multiple
linear regression (MLR) with principle component analy-
sis (PCA) and utilises three kinds of model selection: step-
wise regression, full regression and point-wise regression.
The model using full regression performs best in reproduc-
ing daily mean temperatures in central Europe.Kidson and
Thompson(1998) also apply a form of screening regression
by choosing a maximum of five predictors that are taken into
account for the regression equations. Several other studies
investigate the performance of regression techniques with
good results for temperature and show the need for improve-
ment for precipitation (e.g.Kim et al., 1984; Wilks, 1989). A
critical point for these regression methods is that for climate
change studies, the distribution parameters have to be in-
serted into a regression model for future predictors using pa-
rameters obtained from historical data, because global-local
scale transfer relations may not be stationary in future.

In general, weather generators are stochastic models that
produce time series of local variables from statistical char-
acteristics. They are mostly used in combination with other
techniques. For a Hidden Markov Model (Bates et al., 1998),
it is combined with weather classification. A combination
with regression techniques is useful to disaggregate monthly
or daily information or if the time series of observations is
not long enough.

Bürger (1996) introduces so-called expanded downscal-
ing. The approach is similar to linear statistical downscaling,
but links the covariances of local climate and global circu-
lation instead of their anomalies. It operates on the global
covariance and outputs a local covariance so that expanded
downscaling can be used to generate local weather scenarios
and is consequently a combination of a regression model and
a weather generator. The study shows that expanded down-
scaling replicates the variability of temperature and precipi-
tation closer to the observations than a simple linear regres-
sion model. The advantages become mostly clear in detect-
ing precipitation sums.

An alternative to the above mentioned pure regression
approaches is probabilistic downscaling, where probability
distributions instead of time series themselves are consid-
ered. Bremnes(2003) drafts such a method for precipita-
tion, where a common strategy is to divide the probability
distribution into one function for the precipitation occurrence
and one for the precipitation amounts. To relate large-scale
predictors and local climate observations,Michelangeli et al.
(2009) suggest a transformation between the cumulative dis-
tribution functions (CDFs) for recent and future climate con-
ditions. The assumption of stationarity is a key point in sta-
tistical downscaling (Wilby et al., 2004; Maraun et al., 2010)

and has to be made if climate model output is included. The
above mentioned problem of static transfer relations between
global and local scale climate parameters is not solved using
probabilistic downscaling, but is reduced because the link be-
tween global and estimated local variables is not assumed to
be restricted by assumption of a (generalized) linear func-
tional relationship. The influence of this assumption can
be validated by replacing climate projections with reanalysis
data and splitting available data into two subsets and com-
paring the according transfer functions.

The objective of this work is to develop an approach
suitable for downscaling precipitation data in a subtropical
mountain environment, in particular of the High Atlas in Mo-
rocco. For this region, precipitation variability, teleconnec-
tions and dry- and wet-periods recurrences have been anal-
ysed on a larger spatial scale (Born et al., 2008, 2010). In
the present study, the challenge and the aim are to make a
statement on spatial distributions of precipitation character-
istics in areas with difficult local conditions. The problems
to be handled are skewed precipitation distributions, strong
topographic gradients and little amount of data. So far, only
few studies dealt with the effects of topography on daily pre-
cipitation in Africa (e.g.Hewitson and Crane, 1996). But in
particular in this area the knowledge of available fresh water
resources and their future development is an important issue
for agriculture and policy makers (Speth and Fink, 2010).

A CDF transformation, similar toMichelangeli et al.
(2009) and based on probability mapping, is used in a first
step to work out a transfer function between large-scale re-
analyses and observations for each given test site. Therefore
a theoretical CDF, e.g. Weibull, is fit to the empirical cu-
mulative distributions of daily precipitation amounts. In this
study, data consists of observations from eleven weather sta-
tions and ERA-Interim reanalyses. In a second step, we com-
bine this approach with MLR applied on estimated parame-
ters of the theoretical distribution. This two-step approach
is then used to estimate precipitation distributions at every
point of the investigation area taking into account local topo-
graphic information and large-scale distribution parameters.

Details on the investigation area and data sources are given
in Sect.2. In Sect.3 the linking of model data, observations
and topographic data is explained. Validation and application
results of the two-step approach are presented in Sect.4. In
Sect.5 the probability of zero daily precipitation is investi-
gated. A short summary and conclusions finish this paper.

2 Investigation area and data

Precipitation observations used in this study were collected
within the GLOWA project “IMPETUS West Africa” (for a
comprehension of the project seeSpeth et al., 2010). The
considered area is characterized by strong NW-SE gradients
both of altitude and precipitation. The locations of the sta-
tions and the topography are shown in Table1 and Fig.1.
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Fig. 1. Upper and middle Dr̂aa Catchment and positions of the
eleven IMPETUS weather stations and topography from digital el-
evation model.

Table 1. Detailed information of the eleven IMPETUS test sites.

Name Code Longitude Latitude Altitude
[◦ E] [◦ N] [m]

Asrir ASR −5.84 30.36 750
Bou Skour BSK −6.34 30.95 1420
El Miyit EMY −5.63 30.36 790
Imeskar IMS −6.25 31.50 2250
Lac Iriki IRK −6.35 29.97 450
Jebel Hssain Brahim JHB −5.63 29.94 725
M’Goun MGN −6.45 31.50 3850
Taoujgalt TAO −6.32 31.39 1870
Tichki TIC −6.30 31.54 3250
Trab Labied TRB −6.58 31.17 1330
Tizi-n-Tounza TZT −6.30 31.57 2960

They are located at the river catchment of the river Drâa (Ara-
bic: Oued Dr̂aa) in south-eastern Morocco. The area is char-
acterized as semi-arid, has a size of 28.428 km2 and contains
parts of the alpine High Atlas Mountains in the north and
the arid Saharan borders at the foothills. The altitude of the
test sites ranges from 445 m (Lac Iriki) to 3850 m (M’Goun).
The precipitation in the mountains feeds the reservoir El-
Mansour-Eddahbi, which is the fresh water source of six river
oases downstream, though only two are permanent through-
out the year (Schulz and Judex, 2008, chapter 3). At the three
highest test sites, the measured rain has to be supplemented
by snow precipitation, which is detected by snow heights.

The records cover a period of about eight years (16
November 2000 to 1 November 2008), with failure rates
within this period from 7% to 22%. They were caused by
shorter measuring periods at several test sites and by opera-
tional failures. The availability of daily precipitation values
is illustrated in Fig.2. The data matrix contains 1201 days,
where reports of all sites are complete. This number can be

Fig. 2. Availability of daily precipitation values at the eleven test
sites. Available dates are marked in green and missing dates are
marked in red.

improved to 2119, if days where at least ten of the eleven
stations have measured are taken into account. The value of
the eleventh station can be estimated by multiple linear re-
gression taking topographic data into account (see Sect.3.3).
A large number of observations is important, as the precip-
itation distribution is only valid for days with precipitation
occurrence, and many days without precipitation cannot be
used for the parameter estimation. Further, the period should
be long enough to split it into a trainings- and a validation-
subset.

As surface data, a digital elevation model (DEM) with
a resolution of 1 km× 1 km is used. It is based on the
Space Shuttle Radar Topography Mission (SRTM) in Febru-
ary 2000 (Farr et al., 2007). “Total precipitation” of ERA-
Interim reanalyses is daily accumulated and represents large-
scale data with a resolution of 0.5◦

×0.5◦ (Berrisford et al.,
2009). To allow for a comparison between this data and the
observations, the reanalysis amounts are bilinearly interpo-
lated to test sites.

3 The two-step approach

The approach presented in this section links two problems:
(i) downscaling of large-scale reanalyses to the sites and
(ii) interpolation or extrapolation of observational data to a
high-resolution grid using an elevation model of the investi-
gation area. To solve these problems we combine probability
mapping and MLR. We use a probabilistic approach, which
means that statistical precipitation characteristics are used as
predictands instead of absolute rainfall amounts.

3.1 Estimation of the Weibull distribution parameters

As a preliminary step, the empirical precipitation distribution
for values greater than 0 mm precipitation amount is fit by a
theoretical distribution. In this study, the cumulative Weibull
distribution is chosen. The advantage is that the estimation
of the parameters is simple and straightforward (seeZhang et
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Fig. 3. Estimation of Weibull parameters by linear regression at the
station Bou Skour. Black dots: Observed values; grey dots: ERA-
Interim Reanalysis data interpolated to test site location.

al., 2006); moreover, they are positive definite. In our study,
the cumulative Weibull distribution is used in this form:

F (x) = 1−exp
(
−αxβ

)
(1)

To estimate the parameters, the distribution can be trans-
formed so that the converted values can be fit by a linear
regression (see AppendixA1).

Figure3 shows an example for the estimation of the pa-
rameters for observations and bilinearly interpolated reanal-
yses at test site Bou Skour. The linear form of the curves
at least for precipitation values above the lowest observation
of 0.1 mm indicates that the Weibull distribution allows for a
sufficient fit of the data. This is verified by a Kolmogorov-
Smirnov goodness-of-fit test, where the estimated Weibull
distribution is only rejected for observations at Tichki on 5%
significance level and reanalyses interpolated to Trab Labiet
on 5% and 1% significance level (see Table2). The dif-
ferent slopes result from the fact that the gridded precip-
itation, which has to be interpreted as a grid-box average,
shifts the rainfall distribution slightly towards a distribution
with higher frequencies of small rainfall values. Addition-
ally, the tendency to smaller amounts is increased by the bi-
linear interpolation. It may be concluded that the left tail of
the reanalysis rainfall data distribution, which contains very
small values (beyond the lowest observation limit!), is not
adequately represented by a Weibull function. But this is
not problematic here for two reasons: on the one hand we
are mainly interested in “observable” rainfall amounts, on
the other hand the different slopes should be realized by the
transfer function (see Sect.3.2).

3.2 Transfer function between model data and
observations

Climate change studies on a local scale usually have to con-
sider three known distributions: one for historical observa-
tions at a certain location and two for climate model data

Table 2. Kolmogorov-Smirnov goodness-of-fit test (see Ap-
pendix A2). Rejections are marked in bold (Weibull distribu-
tion paramters estimated from observations) and/or are underlined
(Weibull distribution parameters estimated by MLR).

Observations

Test site dmax dmax,MLR dn;p=0.975 dn;p=0.995

ASR 0.0699 0.1577 0.2212 0.2653
BSK 0.0529 0.0691 0.1768 0.2119
EMY 0.0762 0.2574 0.2499 0.2997
IMS 0.0824 0.1187 0.1365 0.1636
IRK 0.1237 0.1531 0.2417 0.2899
JHB 0.1381 0.1504 0.2591 0.3106
MGN 0.0863 0.0819 0.0909 0.1090
TAO 0.0471 0.1189 0.1283 0.1538
TIC 0.0846 0.1279 0.0766 0.0919
TRB 0.1129 0.2188 0.1711 0.2051
TZT 0.0674 0.0862 0.1283 0.1538

Reanalyses

Test site dmax dn;p=0.975 dn;p=0.995

ASR 0.1071 0.1464 0.1755
BSK 0.0814 0.1113 0.1333
EMY 0.1004 0.1464 0.1755
IMS 0.0502 0.1060 0.1271
IRK 0.1098 0.1272 0.1524
JHB 0.1050 0.1647 0.1974
MGN 0.0730 0.1060 0.1271
TAO 0.0591 0.1060 0.1271
TIC 0.0544 0.1060 0.1271
TRB 0.1340 0.1060 0.1271
TZT 0.0539 0.1060 0.1271

interpolated to this location, for a historical and a projected
future subset.

In this study and for validation of the method, future pro-
jections are replaced by reanalysis data. ERA-Interim daily
precipitation totals are bilinearly interpolated to sites. In
order to allow for the validation of the method, both se-
ries, observations and interpolated reanalyses, are split into
a trainings- and a validation-subset. To estimate the distri-
bution for the validation-subset at the sites, a new precipita-
tion dataset at the sites (xSV, S = station data, V = validation-
subset) is estimated based onMichelangeli et al.(2009).
An equal probability mapping (see AppendixA3) is ap-
plied to define a transfer function between the distributions
of reanalyses and of observations. It takes into account the
change of the large-scale distribution form the trainings- to
the validation-subset. A common strategy in statistical down-
scaling is to assume that the relationships between predictors
and predictands remain constant for periods outside the fit-
ting period (Wilby et al., 2004). This assumption is adopted
here so that the transfer function can be applied to the model
dataset of the validation-subset (xRV, R = reanalysis data,
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Fig. 4. Cumulative distributions of precipitation amount in winter (December–February) at Bou Skour. Left: the first subset (solid lines)
contains the first half, the second subset (dashed lines) the second half of all precipitation days. Right: periods are split according to even
(solid lines) and odd (dashed lines) entry numbers. Blue = observations, green = interpolated reanalysis data, red = estimations.

V = validation-subset). For following validation, attention
has to be turned on impacts of this strategy. The distribu-
tion parameters of the estimated values can be estimated as
described in the subsection above. The advantage of this
method is the fact that MLR can be directly applied on the
new estimated distribution parameters.

3.3 Multiple linear regression

After using the reanalysis data as large-scale predictor to es-
timate the precipitation distribution at the stations for the
validation-subset, the aim is to enhance the resolution of the
data. For this purpose, a transfer function between depen-
dent variable (predictand) and explanatory variables (predic-
tors) is estimated by MLR (see AppendixA4). According to
the probabilistic approach, the Weibull parameters are used
as predictands instead of observed rainfall amounts (except
for the data enlargement). As possible predictors height, lon-
gitude, latitude and the gradients of height in east-west- and
north-south-direction are investigated. To avoid an overfit-
ting of the model, a predictor analysis is carried out. We
chose forward-selection with the corrected coefficient of de-
termination as criterion. In contrast to the uncorrected form,
it takes into account the degrees of freedom to avoid an
increase with every additional predictor of the model (see
Appendix A5). For validation, MLR is first investigated
separately by leave-one-out cross-validation regarding only
Weibull parameters fit to observations. Additionally, the
goodness-of-fit test mentioned in Sect.3.1 is repeated (see
also Sect.4.1).

So far, CDF transformation and MLR are only used sepa-
rately. We combine both approaches in this study to model
the precipitation distribution of a validation-subset at any
point of the investigation area. The combined approach is
validated by means of the two subsets. It has to be remarked
that the order of the two steps is arbitrary and has to be in-
vestigated.

3.4 Logistic regression

The occurrence of precipitation is modelled by logistic re-
gression (Chandler and Wheater, 2002). For this purpose, the
probability of zero daily precipitation (p0) is calculated for
observations and reanalyses interpolated to the test site loca-
tions. According to the transfer function between reanalyses
and observations (Sect.3.2), a ratiot betweenp0 of the ob-
servations andp0 of the reanalysis data is calculated for the
trainings-subset. To avoid estimated values ofp0 lower 0 or

greater 1, it is replaced by a so-called logit ln
(

p0
1−p0

)
. The

probability of zero daily precipitation at the test sites in the
validation-subset can be estimated by the calculated ratio and
the logit of the validation-subset reanalyses. For details see
AppendixA6. The estimated logit is then used as predictand
in the regression model (see Eq.A11).

4 Estimation of precipitation distributions

For following analyses, precipitation distributionsF(x) are
estimated from precipitation days only. Thus, the complete
CDF isH(x) = p0+(1−p0)F (x), wherep0 is the probabil-
ity of zero daily precipitation.

4.1 Validation

For validation, the two parts of the approach are first exam-
ined separately. Only winter months (December to February)
are considered in this study because most of the precipitation
occurs during these months. This leads to a sample size of
593 days including days without precipitation. The approach
may also be applied on data of the other months, but the er-
rors increase with decreasing number of precipitation days.

To analyse the skill of the CDF transformation and espe-
cially the accuracy of the stationarity assumption, the avail-
able time period of winter values is split into a trainings-
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Fig. 5. Left: quantiles of validation-subsets, estimated by transfor-
mation of the cumulative distribution function. Blue dots (circles):
validation-subset consists of the first (second) half of all winter val-
ues. Green dots (circles): validation-subset consists of all winter
values with an even (odd) entry number. Right: quantiles estimated
by multiple linear regression including all winter values.

and a validation-subset. One possibility is to divide the time
period into first and second subset, thus into two continu-
ous subsets. Another possibility is to divide it according to
even and odd entry numbers, which means that every sec-
ond value is used for validation. The different behaviours
of the CDFs resulting from the two different possibilities are
illustrated for station Bou Skour in Fig.4. The difference
between first and second subset is larger for reanalyses than
for observations (left plot). It results that if the first subset is
given (blue solid), the second subset is underestimated (red
dashed). The first subset (red solid) estimated from the sec-
ond subset (blue dashed) is overestimated. In terms of the
assumed static transfer functions, this means that the one de-
termined from the first subset is steeper than the one from
second subset. The CDFs of reanalyses split after even and
odd are nearly identical (right plot). The CDFs of obser-
vations differ for small amounts and are similar for larger
amounts. Therefore, the estimated even CDF (solid red) is
nearly equal to the given odd CDF (blue dashed) and the
other way round. Nevertheless, the estimates are better than
for the first mentioned splitting due to the high conformance
for large amounts. At the high situated test sites, both valida-
tion methods deliver good estimates based on larger number
of values greater 0 mm. The quantiles, estimated by CDF
transformation, are plotted against the original ones in Fig. 5
(left). The above mentioned over- and underestimations are
obvious. The deviations from the optimal diagonal grow with
higher amounts in case of the two continuous subsets and are
roughly constant for the two other subsets.

The estimated MLR model is tested separately by cross-
validation. For this purpose, two subsets are built; one for
slope m and one for axis intercept b, determined as explained
in Sect.3.1 from all available winter observations. Each in-
cludes ten of the eleven test sites. Afterwards, the best MLR
model for m and the best MLR model for b are detected
separately. The coefficients of the eleventh left out test site

Fig. 6. Combination of methods by first transforming the cumu-
lative distribution function and then applying multiple linear re-
gression. Blue dots (circles): validation-subset consists of the first
(second) half of all winter values. Green dots (circles): validation-
subset consists of all winter values with an even (odd) entry number.

are estimated with the information of these subsets, the two
MLR models, and the topographic information (leave-one-
out validation). The original coefficients at this test site are
compared with the estimation, and one residuum per coef-
ficient is calculated. Doing this for every test site yields to
the expected values of all residua. They are with 0.0115 for
axis intercept (E(εb)) and−0.0077 for slope (E(εm)) rela-
tively small compared to the expected values of the coeffi-
cients themselves (E(b) = -0.5225,E(m) = 0.5996). A test
if the residua are normally distributed is not meaningful by
reason of the low number of test sites. But the Weibull dis-
tribution with parameters estimated by MLR is additionally
tested as mentioned in Sect.3.1. The null hypothesis that
the distribution represents the observations well, is rejected
at El Miyit, Tichki and Trab Labiet on 5% and 1% signif-
icance level (compare AppendixA2 and Table2). As can
be seen in Fig.5 (right), the result is very encouraging for
Bou Skour as the quantiles are nearly at the optimal diago-
nal. The skills at the other test sites are also satisfying but
have a larger deviation from the optimal diagonal. This re-
sults show that MLR can be used without the first step and
thus without model data, but in that case it would only be an
interpolation method and limited to observations.

For the combination of methods, the order of the appli-
cation of CDF transformation and MLR has an influence.
The skills differ from test site to test site and from subset
to subset. Nevertheless, no scheme can be established so
that none of both possibilities can be clearly identified as the
better one. For the following applications on the entire in-
vestigation area, first CDF transformation and then MLR is
used. Advantageous are the lower computational costs, be-
cause CDF transformation is not applied to every grid point
of the DEM, but only to the eleven test sites.

The estimated quantiles for Bou Skour are shown in Fig.6;
the results of the other stations are summarized in Table3.
The deviation from the perfect diagonal is at some test sites
even less than for the single CDF transformation. These
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Fig. 7. Transformation of distribution and multiple linear regression applied to observations and topographic data. From left to right: 25th,
50th and 75th quantile. Top (bottom): basic distribution is estimated from all winter values with an even (odd) entry number. The points at
the test sites are coloured according to the calculated quantiles.

results are compared to the ones of a simple nearest neigh-
bours approach and the ones from MLR only with reanalysis
data (not shown). In both cases observations are disregarded
as trainings data set so that quantiles are underestimated and
results are worse than those delivered from the combined ap-
proach.

4.2 Application

For the application of the approach to the entire investigation
area, the time series is again split after even and odd entry
numbers. Winter values of all test sites are taken into account
for the estimation of the regression model.

The resulting quantiles (25th, 50th and 75th) are shown in
Fig. 7. It is obvious that the estimated patterns show a good
agreement with the original quantiles at the stations, marked
in the circles. The quantiles estimated for both subsets are of
a similar order of magnitude, but the plots for the two sub-
sets have little different structures according to the selected
predictors. Interestingly, the longitude has a large influence
on the first subset. Within the shown area, a low gradient is
visible from west to east for the low quantiles and from east
to west for the high quantiles. This is caused by a west-east
gradient of the parameterα and an east-west gradient of the
parameterβ. Thus, the gradient of the quantiles becomes
stronger the farther the data is extrapolated away from the
test sites. This weakness in extrapolating data is caused by
the north-south arrangement of the test sites and the resulting

Table 3. Validation of combined approach with the quantile skill
score (QSS, see AppendixA5).

Test site Validation period:
First Second Even Odd
half half entry # entry #

ASR 4.72 2.28 2.44 0.69
BSK 0.48 0.83 0.18 1.07
EMY 1.50 6.03 0.76 1.50
IMS 3.72 3.85 1.84 0.19
IRK 1.56 13.90 0.26 2.07
JHB 1.56 1.38 0.39 0.45
MGN 1.30 12.06 0.99 0.61
TAO 1.83 3.25 0.47 1.23
TIC 0.79 1.20 1.42 0.93
TRB 3.78 8.22 0.65 1.71
TZT 0.37 91.80 0.33 8.78

lack of observations in east-west direction. For the second
subset, the height and the gradients of height are more influ-
encing, so that the topographic texture emerges more clearly.
Keeping in mind the splitting after even and odd, the subsets
should be well mixed and have similar statistical characteris-
tics. Hence, the differences can be traced back to the small
sample size and should disappear if the sample size is large
enough. A larger spatial expansion of available observations
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Fig. 8. Estimated probabilities of zero daily precipitation (p0). Dots
(Circles): Validation-subset consists of all winter values with an
even (odd) entry number. Blue symbols: First reanalysis data is in-
terpolated to the test sites and thenp0 is calculated. Green symbols:
p0 is calculated at grid points and then interpolated.

Fig. 9. Estimated probabilities of zero daily precipitation (p0). First
(second) subset consists of all winter values with an even (odd) en-
try number. p0 is interpolated to the grid of the digital elevation
model by multiple linear regression. The points at the test sites are
coloured according to the original probabilities.

can be expected to improve results, especially with respect to
different weights of predictors in different subsets. Anyhow,
this fact pronounces the limits of the method with respect to
extrapolating data.

5 Probability of zero daily precipitation

The probability of zero daily precipitation (p0) is calculated
for the observations and the reanalyses. Both values are con-
sidered at the sites. For the calculationp0,reanalysestwo pro-
cedures are possible: (i) amounts are first interpolated to the
test sites and thenp0 is calculated; or (ii)p0 is calculated
at grid points and then interpolated. To avoid negative es-
timated values ofp0 or values greater 1, logistic regression
is used. The relation between reanalysis and observational
data is included by a factor calculated with the ratio between

Table 4. Validation ofp0 estimation: Differences between calcula-
tions and estimates (̂p0−p0) and root mean squared errors (RMSE).
(a) First reanalysis data is interpolated to the test sites and thenp0 is
calculated.(b) p0 is calculated at grid points and then interpolated.

(a) (b)

Test site Validation period:
Even Odd Even Odd

entry # entry # entry # entry #

ASR 0.019 −0.003 0.012 0.006
BSK 0.010 −0.042 0.002 −0.035
EMY −0.002 −0.013 −0.009 −0.004
IMS −0.007 −0.092 −0.015 −0.095
IRK 0.023 0.013 0.018 0.014
JHB −0.006 −0.014 −0.011 −0.007
MGN −0.288 −0.285 −0.360 −0.238
TAO 0.051 0.021 0.041 0.029
TIC 0.187 0.237 0.176 0.249
TRB 0.027 −0.043 0.018 −0.033
TZT −0.458 −0.576 −0.603 −0.579

RMSE 0.174 0.209 0.219 0.206

the probabilities of both datasets. For validation, the time se-
ries is split after even and odd values and cross-validation is
applied.

In Fig. 8, the original probabilities are plotted against the
estimations. The estimation works well for test sites with
a low number of precipitation days, respectively low situ-
ated test sites. At the higher located sites,p0 is strongly
overestimated (Tichki) or underestimated (M’Goun and Tizi-
n-Tounza). This is caused by the MLR and only slightly
strengthened by prepending the transfer factor. Regarding
the interpolation procedure, interpolating reanalysis data first
and then calculatingp0 achieves the best results (compare
Table4). Therefore, this order is used for the following in-
vestigations.

The results for the entire investigation area are shown in
Fig. 9. As can be seen, the agreement between original and
estimated probabilities at the three highest sites is much bet-
ter than the results with cross-validation because the regres-
sion model is trained with eleven instead of ten predictands.
The lower situated stations show also good estimations for
the first subset of the observations (even entry numbers, left).
In the second subset (odd entry numbers, right),p0 is little
underestimated at the station Bou Skour and Trab Labied. In
this case, strong gradients ofp0 occur if data is extrapolated
west of the shown area, similar to the quantiles. This could
also result from the lack of observations in this region.
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6 Summary and conclusions

In this study, a two-step probabilistic approach for downscal-
ing of precipitation data has been proposed and evaluated in
a subtropical mountain environment, namely the upper and
middle Dr̂aa catchment south of the High Atlas in Morocco.
The method combines CDF transformation and MLR to re-
late punctual climate observations, reanalysis data and high-
resolution surface data. The cumulative Weibull distribution
is examined as theoretical distribution by a hypothesis test.
The approach is validated by cross-validation and splitting
the time series into a trainings- and a validation-subset. The
results show that the best choice is to split the time series ac-
cording to even and odd entry numbers, rather than selecting
two separate continuous subsets. The favoured combination
order is first applying CDF transformation and then MLR,
as computational costs are considerably lower in this order.
The Q-Q-plots document the good agreement between the
quantiles of the calculated distributions and of the estimated
distributions. This is valid for CDF transformation and MLR
themselves and also for the combination of both steps. For
the estimation of the probability of zero daily precipitation,
reanalysis are interpolated to the site locations and thenp0
is calculated and related with the local surface data by MLR.
The differences between calculated and estimated probabili-
ties are low for test sites with a low number of precipitation
days. However, the approach performs less well for the three
highest test sites if the model is trained only with ten predic-
tands. Comparing the performance of the approach for inter-
polation vs. extrapolation, the results for the former are very
encouraging, in particular if longitude is not used as a predic-
tor (Fig. 7). On the other hand, results for extrapolation are
comparatively worse: For example, some unreliable values
appear west of the test sites where no stations are available.
Taking into consideration the small amount of available data,
both temporal and spatial, we consider the approach to be
appropriate for areas with complex topography.

In this study, we have chosen a linear regression approach
as statistical downscaling technique, which is rather unusual
for precipitation. Such linear regression approaches are more
typical for normally distributed variables such as tempera-
ture (e.g.Huth, 1999). Nevertheless, we could demonstrate
that such an approach may also be applicable for precipita-
tion if a probabilistic view is used and in combination with
a CDF transformation. At this point, we had to make use of
the assumption of static transfer functions, which is common
in statistical downscaling techniques. Although this strategy
has an influence on the results, it has its adequacy due to
the gain of information. Without the probabilistic view and
the associated use of distribution parameters instead of ob-
served precipitation amounts in the linear regression model,
estimated values may be unrealistic. Furthermore, separately
used MLR of observations is strictly speaking only a kind
of interpolation. The advantage of the combination with
CDF transformation is that large-scale information and the

changes between two different samples (e.g. a historical and
a future climate) can be included in a simple way. If this
information was included as predictor in a regression model
(e.g.Murphy, 1998), it would not be possible to take the local
topography into account due to the different scales. However,
the probabilistic approach delivers precipitation characteris-
tics only in form of distributions. To simulate daily values,
a weather generator would have to be subsequently applied
(e.g.Semenov and Barrow, 2002), potentially in combination
with weather classification (e.g.Bates et al., 1998).

We have noticed some difficulties in transferring the in-
formation from the test sites to the whole area, in particu-
lar for regions where no observations are available. Thus,
the results could be improved significantly when using a spa-
tially denser dataset. In particular for the presented investiga-
tion area, an improvement is expected if additional test sites
would be available in east-west direction. Based on this as-
sessment, good results for an application in areas with a large
density of test sites (e.g. Europe) may be expected. Never-
theless, further work should focus on the improvement of the
extrapolation ability.

The presented two-step probabilistic approach has the po-
tential to be applied for other variables (e.g. temperature or
wind), as in the probabilistic view only the parameters of the
according distributions are estimated. In this case, other or
additional predictors have to be selected and investigated.

In the present study, the approach was tested and validated
with reanalysis data. As next step, possible changes in pre-
cipitation distributions under future climate conditions will
be estimated. For this purpose, it is planned to consider RCM
data as large-scale predictor as a further step. In particular, it
is intended to use the approach to evaluate changes in long-
term precipitation variability and to estimate changes in re-
turn periods for extreme events between present and future
climate conditions. Such information is very important for
impact studies, in particular for those dealing with the avail-
ability of fresh water resources in the presented subtropical
mountain environment.

Appendix A

Methods

A1 Estimation of parameters

The cumulative Weibull distribution is in this study used in
the following form:

F (x) = 1−exp
(
−αxβ

)
(A1)

This distribution can be transformed so that a regression line
y′

= mx′
+b with slopem and axis interceptb can be fit:

ln

(
ln

(
1

1−F(x)

))
= β ln(x)+ ln(α) (A2)
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The estimated regression coefficientsb̂ andm̂ lead to the es-
timated Weibull distribution:

F̂ (x) = 1−exp
(
−exp

(
b̂
)
xm̂
)

(A3)

A2 Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test is a goodness-of-fit test to
verify the congruence between a sample of n sorted obser-
vationsxi with i = 1,...,n and a reference probability distri-
bution (e.g. Weibull). The null hypothesis for this test is in
this study:

H0 : F (x) = F0(x) = 1−exp
(
−exp

(
b̂
)
xm̂
)

(A4)

The alternative hypothesis is:

H1 : F (x) 6= F0(x) (A5)

The null hypothesis is rejected, if the maximum distance be-
tween observations and supposed probability distribution

dmax= sup

{∣∣∣∣ i −1

n
−F0(xi)

∣∣∣∣;∣∣∣∣ in −F0(xi)

∣∣∣∣} (A6)

exceeds the critical valuedn;p, with p = 1−α/2 for a two-
sided test and level of significanceα. Tables for critical val-
ues can be found in literature and are given in Table2 for
investigated cases.

A3 CDF transformation

The distributions of the trainings-subset (observations and re-
analysis data) are equalized:

FST(xST) = FRT(xRT) (A7)

with S = station data, R = reanalysis data, V = validation-
subset and T = trainings-subset. Therewith, a transfer func-
tion is defined that is assumed to be stationary:

xST= F−1
ST (FRT(xRT)) = T (xRT) (A8)

The application of the transfer function on the reanalysis
dataset of the validation-subset leads to an estimated dataset
of observations:

x̂SV = T (xRV) (A9)

A4 Multiple linear regression

Data consists of n observations (vectory) andk predictors
(design-matrixX):

y =

 y1
...

yn

 X =

1 x11 ··· x1k

...
...

...

1 xn1 ··· xnk

 (A10)

It is modeled by a multiple linear regression:

y = Xc+ε (A11)

The regression coefficients estimated with least squares are:

ĉ =

(
XT X

)−1
XT y (A12)

with
(
XT X

)−1
= inverse covariance matrix.

The result is the estimated linear regression function:

ŷ = Xĉ (A13)

A5 Skill scores

In this study, different scores are used to evaluate the skill
of the approach and parts of it. The quality of the estimated
regression model is calculated by the corrected coefficient of
determination:

R2
corr= 1−

n−1

n−p

(∑n
i=1(ŷi −yi)

2∑n
i=1(yi −y)2

)

with y =
1

n

n∑
i=1

yi (A14)

In contrast to the uncorrected form, it takes into account the
degrees of freedom. Without this correctionR would in-
crease with every additional predictors of the model. This
is important asR2

corr is used as criterion for the predictor se-
lection. The closer the coefficient is to 1, the better the match
to the data is.

The skill of the estimated precipitation distributions is
given by the quantile skill score:

QSS=

n∑
i=1

∣∣Qv −Q̂v

∣∣
n
√

2
(A15)

Therewith the mean distance of the quantilesQ from the line
of identity in a Q-Q-plot is calculated.

The errors of the estimation of the probability of zero daily
precipitationp0 are averaged by the root mean squared error:

RMSE=

√√√√1

n

n∑
i=1

(p0− p̂0)
2 (A16)

A6 Logistic regression

The probability of zero daily precipitationp0 is replaced by

a logit (ln
(

p0
1−p0

)
). To relatep0 of large- and local-scale data

a ratiot is calculated.

t =

ln
(

p0,S,T
1−p0,S,T

)
ln
(

p0,R,T
1−p0,R,T

) (A17)

with S = station data, R = reanalysis data, V = validation-

subset and T = trainings-subset. Therewith ln
(

p0
1−p0

)
at the

test sites in the validation-subset can be estimated:

ln

(
p̂0,S,V

1− p̂0,S,V

)
= t · ln

(
p0,R,V

1−p0,R,V

)
(A18)
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This estimation is then used as predictand in the regression
model:

ln

(
p̂0,S,V

1− p̂0,S,V

)
= Xc+ε (A19)
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