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Abstract. We present a novel approach to explain the
complex scaling behavior of the Drossel-Schwabl forest-fire
model in two dimensions. Clusters of trees are characterized
by their size and perimeter only, whereas spatial correlations
are neglected. Coalescence of clusters is restricted to clus-
ters of similar sizes. Our approach derives the value of the
scaling exponentτ of the event size distribution directly from
the scaling of the accessible perimeter of percolation clusters.
We obtainτ = 1.19 in the limit of infinite growth rate, in per-
fect agreement with numerical results. Furthermore, our ap-
proach predicts the unusual transition from a power law to an
exponential decay even quantitatively, while the exponential
decay at large event sizes itself is reproduced only qualita-
tively.

1 Introduction

The Drossel-Schwabl forest-fire model (DS-FFM in the fol-
lowing) (Drossel and Schwabl, 1992) is one of the three most
widespread models in the context of self-organized critical-
ity (SOC) (Bak et al., 1987; Bak, 1996; Jensen, 1998). Al-
though it is nearly 20 yr old, many questions concerning its
characteristics remain to be answered. Analytical theories
are still lacking; almost the entire knowledge about the DS-
FFM stems from numerical simulations.

The DS-FFM is a stochastic cellular automaton model
mostly considered on a two-dimensional square lattice with
L×L sites and periodic boundary conditions. Each site can
be either empty or occupied by a tree. In each time step,θ

attempts are made to plant new trees on randomly selected
sites. Empty sites turn into the state occupied, while already
occupied sites keep their state. Then, one site is randomly
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chosen. If this site is occupied, the entire cluster of occu-
pied sites connected to it by nearest-neighbor relations burns
down.

After a transient phase, the system reaches a quasi-steady
state that seems to be characterized by power-law event-
size distributions in the limit of large growth ratesθ : The
statistical distribution related to the event sizes (measured
in terms of the number of burnt trees) decreases likes−τ ,
whereτ is typically denoted scaling exponent. Fig.1 gives
the frequency densityu(s) of the fires (i.e., the number
of fires per spark) for different growth ratesθ . These re-
sults suggest that the scaling exponentτ converges towards
1.19 for θ → ∞, in perfect agreement with the presum-
ably most reliable earlier results ofGrassberger(2002) and
Pruessner and Jensen(2002).

Although its applicability to real wildfires has been shown
(Malamud et al., 1998; Zinck and Grimm, 2008; Krenn and
Hergarten, 2009) and much effort has been spent to quan-
tify the behavior of the DS-FFM numerically (Moßner et al.,
1992; Grassberger, 1993; Christensen et al., 1993; Henley,
1993; Clar et al., 1994; Honecker and Peschel, 1997; Pastor-
Satorras and Vespignani, 2000; Grassberger, 2002; Pruessner
and Jensen, 2002; Schenk et al., 2002), there is still no con-
sistent explanation for major parts of its dynamics. This ap-
plies in particular to the transition from the power-law regime
to an exponential decay which is more complicated than in
other models of SOC such as the Bak-Tang-Wiesenfeld sand-
pile model (Bak et al., 1987) or the Olami-Feder-Christensen
earthquake model (Olami et al., 1992). As illustrated in
Fig. 1, the event-size distribution first increases relatively to
the power law and then decays rapidly. This unusual bump
in the distribution even makes it difficult to determine the
scaling exponentτ of the power-law regime numerically.
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Fig. 1. Frequency density of the fires in the DS-FFM for different growth ratesθ. The dashed line corresponds

to a power law with an exponentτ =1.19.

100

101

102

103

104

105

106

107

100 101 102 103 104 105 106 107

pe
rim

et
er

 p
(s

)

cluster size s

0.7x0.98

θ = 16,384
θ = 4096
θ = 1024

3x0.69

pt(s)

pa(s)

Fig. 2. Total and accessible perimeter of the clusters in the DS-FFM measured atdifferent growth ratesθ.
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Fig. 1. Frequency density of the fires in the DS-FFM for different
growth ratesθ . The dashed line corresponds to a power law with an
exponentτ = 1.19.
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Fig. 1. Frequency density of the fires in the DS-FFM for different growth ratesθ. The dashed line corresponds

to a power law with an exponentτ =1.19.
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Fig. 2. Total and accessible perimeter of the clusters in the DS-FFM measured atdifferent growth ratesθ.

12

Fig. 2. Total and accessible perimeter of the clusters in the DS-FFM
measured at different growth ratesθ .

2 A simple approach to derive the scaling exponent

We now derive a semi-phenomenological approach to ex-
plain this behavior where clusters are characterized only by
their size without regard to spatial correlations between clus-
ters. In its spirit, this idea is similar to the hierarchical clus-
tering idea ofGabrielov et al.(1999). Under some extreme
simplifications, they obtained a scaling exponentτ = 1 which
is significantly lower than that of the DS-FFM.

Let N(s) be the number of clusters of sizes on a lattice of
total sizeA = L2. Like in the DS-FFM, the dynamics of our
model is governed by formation of new clusters, growth of
existing clusters, coalescence of clusters, and annihilation of
clusters by burning.

The probability that a given cluster of sizes is burnt down
by an ignition event is simplys

A
, so each ignition event

changes the number of clusters of sizes by

δNb(s) = −N(s)
s

A
= −u(s) (1)

with u(s) =
N(s)s

A
in the mean. Obviously,u(s) is the mean

number of fires of sizes per ignition event, i.e., the frequency
density of the event-size distribution.

After each ignition event,θ attempts are made to plant new
trees. An existing cluster of sizes grows if a new tree is
planted on its total perimeterpt (s). Since clusters are not
dense in general, the total perimeter consists of both external
and internal empty nearest-neighbor sites. As Fig.2 demon-
strates, the total perimeterpt (s) is almost proportional to the
cluster size for large clusters. Our numerical data suggest the
relationshippt (s) = 0.7s0.98, but for simplicity we assume

pt (s) = f s (2)

with f = 0.7 in the following. The same relationship was
originally derived for site percolation clusters at and above
the percolation threshold byKunz and Souillard(1978), and
our results show that it is valid for clusters in the DS-FFM,
too. Plantingθ new trees letsθN(s)

pt (s)
A

clusters grow from
sizes to s +1. Therefore, the number of clusters of sizes

changes by

δNg(s) = θN(s −1)
pt (s −1)

A
−θN(s)

pt (s)

A
= −θf (u(s)−u(s −1)). (3)

At this point one may argue that several trees may grow at
the perimeter of a single cluster in case of high growth rates
or large clusters. According to Eq. (3), k clusters would in-
crease their size by one instead of one cluster byk. How-
ever, both modes of growth act almost in the same way on
the size distribution, which will become obvious when we
switch from the discrete representation to a differential equa-
tion (Eq.11).

Coalescence of clusters takes place if a tree grows at a site
which belongs to the perimeter of two or more clusters. In
analogy to the widespread approach using Smoluchowski’s
coagulation equation with a suitable kernel, we neglect coa-
lescence events involving more than two clusters. In contrast
to growth, not all sites of a cluster’s total perimeter are avail-
able for coalescence. Sites belonging to the internal part of
the perimeter can only contribute to coalescence with clusters
located like islands in a hole of the original cluster. Thus,
coalescence via internal perimeter sites is in principle only
possible between clusters of strongly different sizes. As dis-
cussed later, this mechanism is not very efficient.

We therefore assume that coalescence does not depend on
the total perimeter of clusters, but on the so-called accessible
perimeterpa(s). It consists of those perimeter sites which
can be reached, in principle, by a random walker coming
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from infinity (Grossman and Aharony, 1986). The accessible
perimeter was recently used in a modified forest-fire model
to mimic ignition by human impact (Krenn and Hergarten,
2009). Numerical results on the total and the accessible
perimeter are shown in Fig.2. Due to the significantly higher
numerical effort for evaluating perimeters, growth rates are
smaller than those used to examine the event-size distribu-
tions. For geometric reasons, total and accessible perimeters
must be the same for all clusters withs ≤ 6, while a signifi-
cant deviationpa(s) <pt (s) becomes visible fors ≥ 20. Fig-
ure2 reveals that the accessible perimeter scales like

pa(s) = gsh (4)

with g = 3 andh = 0.69 for intermediate cluster sizes. As
discussed byKrenn and Hergarten(2009), this behavior is
almost identical to that obtained for site percolation clusters
by combining numerical results on the fractal dimension of
the accessible perimeter (Grossman and Aharony, 1986) with
theoretical arguments. Theθ -dependent deviation from the
power law at large cluster sizes will be discussed in the next
section.

The probability that a given pair of clusters of sizess1
and s2 coalesce when a new tree is planted amounts to
pa(s1)

A
pa(s2)

A
. In principle, clusters of any sizes can coalesce,

but the process is most efficient in generating large clusters
if both clusters are of similar sizes. In this case, the largest
new cluster is about twice as large as the original clusters.
In contrast, coalescence of a large cluster with a small clus-
ter increases the size of the large cluster only gradually. We
therefore only consider the case that one size is not larger
than twice the other size, i.e. that two clusters with sizes in
the interval[1

2

√
2s,

√
2s] turn into one cluster with a size be-

tween
√

2s and 2
√

2s. The number of clusters in this interval
is approximately

N̂(s) =

√
1

2
sN(s). (5)

It is easily verified that Eq. (5) is exact ifN(s) is constant or
N(s) ∝ s−2. However, the cluster numbers in the DS-FFM
follow the relationshipN(s) ∝ s−τ−1 whereτ is the scaling
exponent of the fire-size distribution. In this case, Eq. (5)

changes intoN̂(s) =

√
2
τ
−

√
2
−τ

τ
sN(s), but it can easily be

checked that the difference towards Eq. (5) is less than 2 %
for 0≤ τ ≤ 1.4.

Using Eq. (5), the number of pairs in the interval

[
1
2

√
2s,

√
2s] is 1

2

(
N̂(s)

)2
=

1
2

(√
1
2sN(s)

)2

, so that the

number of coalescence events is roughly

θ 1
2

(√
1
2sN(s)

)2(
pa(s)

A

)2
.

Thus, the number of clusters in the interval[
1
2

√
2s,

√
2s]

changes by

√
1

2
sδNc(s) = θ

1

2

(√
1

2

s

2
N
( s

2

))2(
pa(

s
2)

A

)2

− 2θ
1

2

(√
1

2
sN(s)

)2(
pa(s)

A

)2

, (6)

where the factor 2 in the second line states that two clusters
vanish in a single coalescence event. This can be rewritten in
the form

δNc(s) = −
θ

√
2s2

(
spa(s)

2u(s)2
−

s

2
pa

( s

2

)2
u
( s

2

)2
)

. (7)

Strictly speaking, this approach neglects the contribution of
the connecting tree itself on the size of the resulting cluster.
But in return, we did not subtract the overlap of accessible
perimeters when computing growth (Eq.3), so that this (any-
how small) effect is compensated.

As soon as the system has reached its quasi-steady state,
coalescence, growth, formation of new clusters, and burning
must be in equilibrium:

δNc(s)+δNg(s)+δNf (s)+δNb(s) = 0, (8)

where the formation of new clustersδNf (s) vanishes fors >

1. Inserting Eqs. (1), (3), and (7) leads to the equilibrium
condition

1
√

2s2

(
spa(s)

2u(s)2
−

s

2
pa

( s

2

)2
u
( s

2

)2
)

+f (u(s)−u(s −1))+
u(s)

θ
= 0 (9)

for s > 1. Alternatively, Eq. (9) can be transformed into a
differential equation. Since the term in the first parentheses
can be seen as a discrete representation of the differential
operator

d

d log2s
= log2

d

d logs
= s log2

d

ds
(10)

and log2≈
√

1
2, we arrive at

1

2s

d

ds

(
spa(s)

2u(s)2
)
+f

d

ds
u(s)+

u(s)

θ
= 0. (11)

The cases = 1 must be treated separately. The terms con-
taining s

2 or s −1 in Eq. (9) vanish, while formation of new
clusters comes into play. A new cluster of size 1 is gener-
ated whenever a new tree is planted at a site which is nei-
ther part of an existing cluster itself nor of its total perimeter.
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Neglecting the overlap of the perimeters of clusters, we ob-
tain

δNf (1) = θ

(
1−

∞∑
s=1

N(s)
s +pt (s)

A

)

= θ

(
1−(1+f )

∞∑
s=1

u(s)

)
= θ (1−(1+f )ρ), (12)

where

ρ =

∞∑
s=1

u(s) (13)

is the total tree density, i.e., the number of occupied sites per
lattice size.

However, Eq. (12) does not regard the contribution of
small clusters correctly as their total perimeter is underes-
timated by Eq. (2), e.g., pt (1) = 4 andpt (2) = 6 for real
clusters, while Eq. (2) predictspt (1) = 0.7 andpt (2) = 1.4.
For simplicity, we only apply a correction fors = 1, so that
Eq. (12) turns into

δNf (1) = θ (1−(1+f )ρ −(4−f )u(1)). (14)

From this we immediately obtain

16
√

2
u(1)2

+

(
8−f +

1

θ

)
u(1)+(1+f )ρ = 1, (15)

where we have assumed thatpa(1) = 4, too, although the un-
derestimation of the accessible perimeter by Eq. (4) is rather
weak (Fig.2).

The basic properties of the model can be derived directly
from Eq. (11) without regard to Eq. (15). Let us first insert
Eq. (4) into Eq. (11) and rearrange the terms in order to de-
termine the dominating contributions:

(
u(s)+

f

g2s2h

)
d

ds
u(s) = −

(
h+

1
2

s
u(s)+

1

θg2s2h

)
u(s).

(16)

On both sides, the terms arising from coalescence (first term
in Eq.11) dominate if

u(s) �
f

g2s2h
and u(s) �

1

θ
(
h+

1
2

)
g2s2h−1

. (17)

In this case, Eq. (11) yields

spa(s)
2u(s)2

= const (18)

and thus in combination with Eq. (4)

u(s) ∝ s−(h+
1
2 ). (19)
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Fig. 3. Event-size distribution in the original DS-FFM (dashed) and
in the simplest version of our model (solid) for different growth
ratesθ . For clarity, the lines withθ = 1000 were shifted downwards
by one decade, and the lines withθ = 106 were lifted by one decade.
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Fig. 4. Event-size distribution of our model using the enforced co-
alescence according to Eq. (25) (solid) compared to the DS-FFM
(dashed). The pairs of lines forθ = 1000 andθ = 106 are shifted as
in Fig. 3.

So the frequency density of the fires follows a power law with
an exponent

τ = h+
1

2
= 1.19 (20)

in this regime. The scaling exponentτ is solely determined
by the scaling exponent of the accessible perimeter, which is
a geometric property of the clusters and coincides with that
found for percolation clusters. Thus, Eq. (19) relatesτ to a
property of percolation clusters. We note that the predicted
valueτ = 1.19 matches the value obtained numerically from
the data shown in Fig.1 exactly.

The conditions stated in Eq. (17) define the range of valid-
ity of the power-law distribution. Inserting Eq. (19) into the
first condition immediately reveals that this condition may be
violated at small cluster sizes. This means that coalescence
dominates over growth only above a minimum cluster size.

Nonlin. Processes Geophys., 18, 381–388, 2011 www.nonlin-processes-geophys.net/18/381/2011/
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In return, the second condition defines an upper limit where
burning starts to disturb coalescence. In both cases, the range
strongly depends on the parameterg which quantifies the in-
tensity of coalescence by means of the accessible perimeter.

Quantifying the behavior ofu(s) above the upper limit is
more difficult. Here we can only state that Eq. (11) yields an
exponential decay if coalescence becomes negligible com-
pared to growth and burning:

u(s) ∼ e
−

s
f θ . (21)

Figure3 shows the results obtained by solving Eqs. (11)
and (15) numerically. Compared to the DS-FFM (dashed
lines), three striking differences occur:

1. The fire size distribution approaches a power law very
slowly at small sizes, so that recognizing a power law
reliably requires very high growth rates.

2. The characteristic bump in the distribution at the tran-
sition from a power law to an exponential decay is not
reproduced.

3. The exponential decay is too fast.

With regard to the discussion of Eq. (17), the first observation
suggests that coalescence is too weak in our approximation.
This may be attributed to the assumption that only clusters of
nearly the same size can coalesce. In order to make a quan-
titative estimate we consider the case that a tree is planted
on the accessible perimeter of a given cluster of sizes. The
mean increase in size due to coalescence with smaller clus-
ters is

δs =

∫ s

1
N(ξ)

pa(ξ)

A
ξdξ =

∫ s

1
u(ξ)pa(ξ)dξ, (22)

where we have introduced a continuous size variable for con-
venience. Based on the power-law behavior ofpa(s) (Eq.4)
andu(s) (Eq.19) we obtain

δs = 2u(s)pa(s)
√

s
(√

s −1
)
≈ 2u(s)pa(s)s. (23)

Corresponding to our simplification, only clusters with sizes
greater thans2 may contribute, which results in

δs̃ = 2u(s)pa(s)s

(
1−

√
1

2

)
≈ 0.3δs. (24)

Thus, our simplification underestimates coalescence by more
than a factor three. In the following, we compensate this
by multiplying the coalescence term in Eq. (11) by 10

3 , i. e.,
replace the term1

2s
with 5

3s
:

5

3s

d

ds

(
spa(s)

2u(s)2
)
+f

d

ds
u(s)+

u(s)

θ
= 0. (25)

As shown in Fig. (4), this modification fixes the first problem,
but does not change anything at the exponential decay and
the transition. In particular, the bump is still not reproduced.
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Fig. 5. Schematic illustration of the perimeter available for coales-
cence with clusters of the same size.

3 The transition to exponential decay

When considering the perimeters of clusters in Fig.2 we al-
ready recognized a deviation of the accessible perimeter from
Eq. (4) at large cluster sizes. Above a critical size which de-
pends onθ , the accessible perimeter grows more rapidly with
the cluster size than predicted by Eq. (4).

This increase suggests that the shape of the largest clus-
ters differs from that of smaller clusters. The change is re-
lated to the result that growth becomes insignificant com-
pared to coalescence for large clusters, leading to a less ef-
ficient “smoothing” of the accessible perimeter. As men-
tioned above (Eq.18), the coalescence termspa(s)

2u(s)2 in
Eq. (25) becomes constant, while the growth term is propor-

tional tou(s) and thus decays according tou(s) ∝ s−(h+
1
2 ).

After coalescence of two large clusters, the resulting acces-
sible perimeter should be nearly the sum of the accessible
perimeters of the two clusters. Thus coalescence in absence
of growth should result in an almost linear increase of the
accessible perimeter with the cluster size, similar to the total
perimeter, manifested in the deviation from the power law in
Fig. 2.

However, this deviation should result in a more rapid de-
cay ofu(s) at large sizes in obvious contradiction to the ob-
served bump in the distribution. This is easily recognized
since Eq. (18) immediately leads to

d logu(s)

d logs
= −

1

2
−

d logpa(s)

d logs
. (26)

This relationship generalizes Eq. (19) to the case that the ac-
cessible perimeter is not a power-law function and directly
relates the slopesu(s) andpa(s) in double-logarithmic plots.
So the decrease ofu(s) should simply become steeper at the
size s wherepa(s) leaves the power law if the accessible
perimeter is responsible for coalescence, provided that coa-
lescence still dominates.

Understanding this phenomenon requires a more thorough
consideration of the accessible perimeter that refers to a
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θ = 30,000 θ = 1000

Fig. 6. Two examples of burnt clusters withs≈ 10,000 andpa ≈ 2000 at different growth ratesθ=30,000

andθ=1000.
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Fig. 6. Two examples of burnt clusters withs ≈ 10 000 andpa ≈

2000 at different growth ratesθ = 30 000 andθ = 1000.

small random walker (of size one). Coalescence in absence
of growth result in fjord-like perimeter elements which are
accessible by a small random walker, but not by another clus-
ter of the same size as required for efficient coalescence. Fig-
ure5 illustrates this effect for two ball-shaped clusters. After
coalescence, only two thirds of the resulting perimeter are
accessible by identical clusters, leading topa(s) =

4
3pa(

s
2)

in this example. This increase is even slower than that pre-
dicted by Eq. (4), pa(s) = 2hpa(

s
2) ≈ 1.61pa(

s
2). Thus, sim-

ple growth is necessary to keep coalescence at its full effi-
ciency.

As an example, Fig.6 shows two burnt clusters ran-
domly drawn from two simulations with different growth
rates. Both are of similar sizes ≈ 10 000 and accessible
perimeterpa ≈ 2000, which is close to the value predicted
by Eq. (4). While the left one (θ = 30 000) is in the regime
where the power-law distribution perfectly holds, the right
one (θ = 1000) is just in the middle of the bump of the distri-
bution (see Fig.1). Despite their similar sizes and accessible
perimeters, significant differences in their shapes are found:
The accessible perimeter of the right cluster is less smooth,
and there are more large fjord-like structures which are not
accessible by a cluster of similar size and shape. Of course,
these two clusters are just examples and not completely rep-
resentative since clusters of the same size strongly vary in
shape, but we found at least the same tendency by compar-
ing several clusters.

We describe this effect by introducing a new perimeter
pc(s), the accessible perimeter available for coalescence.
According to Eq. (4), pc should follow the relationpc(s) =

2hpc(
s
2) as long as growth is strong enough. According to

the arguments given above, this may decrease to

pc(s) = α2hpc

( s

2

)
(27)

with α ≈
2
3 in absence of simple growth. Let us assume

that coalescence changespc(s) according to Eq. (27), so that
an accessible, but non-available partpa(s)−pc(s) remains.
Trees growing at this non-available part should make this
part smaller and the available part larger. As a very sim-
ple approach, we assume that each tree growing on the non-
available part reduces this part just by one site and increases
the available part by one site.

Let us consider a cluster of sizes that just originated from
two half-sized clusters. In each step it is destroyed by fire or
changes its size by further coalescence with the probability

q =
s

A
+θ

√
1

2
sN(s)

(
pc(s)

A

)2

=

s +θ

√
1
2u(s)pc(s)

2

A
, (28)

while the probability of a new tree being planted at any
perimeter site isp =

θ
A

. The number of treesnp planted
at each site in the mean before the cluster coalesces again
or burns can be computed as follows. In the first step,p

trees are planted in the mean. A second step takes place at a
probability 1−q, and the probability that at leastk steps are
performed is(1−q)k−1. As p trees are planted in the mean
in each step, we obtain

np =

∞∑
k=1

p(1−q)k−1
=

p

q
=

θ

s +θ

√
1
2u(s)pc(s)2

, (29)

where the sum was computed using a geometric series. Thus,
the probability that a site of the accessible, but not available
for coalescence perimeter of a cluster remains in this state is
e−np , so that this number decays according to

pa(s)−pc(s) =

(
pa(s)−α2hpc

( s

2

))
e−np . (30)

From this we immediately derive

1−
pc(s)

pa(s)
=

(
1−α

pc

(
s
2

)
pa

(
s
2

))e−np . (31)

For solving this equation we assume that the ratio of avail-
able and accessible perimeter does not change strongly ass

doubles, namely

pc

(
s
2

)
pa

(
s
2

) ≈
pc(s)

pa(s)
. (32)

Under this approximation we obtain

pc(s)

pa(s)
= 1−

1−α

enp −α
(33)

Analyzing this equation withnp from Eq. (29) numerically
reveals that the second term in the denominator in Eq. (29) is
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14

Fig. 7. Event-size distribution of our model usingpc(s) (Eq. 34)
instead ofpa(s) (solid) compared to the DS-FFM (dashed). The
pairs of lines forθ = 1000 andθ = 106 are shifted as in Fig.3.

negligible, so we can assumenp =
θ
s
, and thus

pc(s) = pa(s)

(
1−

1−α

e
θ
s −α

)
. (34)

Sopc(s) starts to fall belowpa(s) significantly ats ≈ θ .
Figure 7 shows numerical results of our model after re-

placing the accessible perimeterpa(s) by pc(s) in compari-
son to the original DS-FFM. The power-law regime and the
transition to the bump is reproduced perfectly, including the
dependence of the transition onθ . Only a vertical shift be-
tween the curves remains, but this is not surprising because
our assumptions on the perimeters are only valid for large
clusters, while both total and accessible perimeters of small
clusters are still underestimated.

However, the exponential decay itself is still too fast.
Equation (21), confirmed by our numerical results, predicts a
decay which is more than ten times faster than in the DS-
FFM. The difference even increases slightly with increas-
ing growth rate. So it seems that growth of large clusters
is much more efficient in the DS-FFM than predicted by our
approach. At this stage, we attribute this phenomenon to the
coalescence of large clusters with small clusters which acts
like growth.

4 Summary and conclusions

In sum, we have explained several properties of the DS-FFM
under quite simple assumptions: Clusters of trees are charac-
terized by their size and their perimeter only, spatial correla-
tions between clusters are neglected, coalescence of clusters
is restricted to clusters of similar sizes, and a difference in the
shapes of coalescence-generated and growth-generated clus-
ters was introduced.

Beyond these simplifications, the scaling properties of the
clusters’ total and accessible perimeters were used (Eqs.2

and4). These relationships involve 3 nontrivial parameters
f , g, and h. The values of these parameters are known
for percolation clusters, and we verified numerically that the
clusters of the DS-FFM exhibit the same scaling behavior.

Our approach suggests that the power-law regime of the
event-size distribution arises from coalescence and derives
the scaling exponentτ = 1.19 from the scaling exponenth of
the accessible perimeter alone (Eq.20). As the latter coin-
cides with that of percolation clusters, our approach derives
the power-law distribution of the fires in DS-FFM including
the scaling exponent from properties of percolation clusters.
The other scaling parameters of percolation clusters (f and
g) only determine the range of the power-law distribution.

The bump at the transition to the exponential decay can
be explained from the shape of large clusters generated by
coalescence. Assuming that only a part of the accessible
perimeter is available for coalescence and introducing a sim-
ple model for the maintenance of this part by growth allows
even a quantitative prediction of the transition. Only the ex-
ponential decay at large cluster sizes itself is not reproduced
well by our approach. So it seems to be the most complicated
property of the DS-FFM under quantitative aspects.
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