
Nonlin. Processes Geophys., 20, 1011–1021, 2013
www.nonlin-processes-geophys.net/20/1011/2013/
doi:10.5194/npg-20-1011-2013
© Author(s) 2013. CC Attribution 3.0 License.

Nonlinear Processes 
in Geophysics

O
pen A

ccess

A model of coupled oscillators applied to the
aerosol–cloud–precipitation system

G. Feingold1 and I. Koren2

1Chemical Sciences Division, NOAA Earth System Research Laboratory (ESRL), 325 Broadway, Boulder,
Colorado 80305, USA
2Department of Earth and Planetary Sciences, Weizmann Institute, Rehovot 76100, Israel

Correspondence to:G. Feingold (graham.feingold@noaa.gov)

Received: 22 May 2013 – Revised: 13 October 2013 – Accepted: 16 October 2013 – Published: 25 November 2013

Abstract. We simulate the aerosol–cloud–precipitation sys-
tem as a collection of cloud elements, each coupled through
physically based interactions with adjacent clouds. The
equations describing the individual clouds follow from the
predator–prey model of Koren and Feingold (2011) with the
addition of coupling terms that derive from the flow of air be-
tween the components resulting from surface divergence or
convergence of flows associated with the life cycle of an in-
dividual cell. It is shown that some degree of coupling might
stabilize clouds that would ordinarily become unstable. Vary-
ing the degree of coupling strength has significant influence
on the system. For weak coupling, the clouds behave as in-
dependent oscillators with little influence on one another. As
the local coupling strength increases, a point is reached at
which the system becomes highly synchronized, similar to
the Sakaguchi et al. (1987) model. Individual cloud oscilla-
tors in close proximity to one another can be both in-phase
or out-of-phase depending on the choice of the time constant
for the delay in communication between components. For the
case considered, further increases in coupling strength result
in reduced order and eventually unstable growth. Finally it is
demonstrated that the set of coupled oscillators mimics qual-
itatively the spatial structure and synchronized behaviour of
both closed and open-cellular cloud fields observed in satel-
lite imagery, and produced by numerically intensive large
eddy simulation.

1 Introduction

The study of weather and clouds can most certainly be traced
back to prehistoric times; there is ample evidence that our
ancestors were keen observers of clouds, rain, and other at-

mospheric phenomena of immediate concern for survival. An
early, written example of the human penchant for identifying
patternsin the skies can be seen in Aristotle’sMeteorologica,
340 BCE. The application of rigorous scientific method to
weather forecast and clouds began in earnest in the late 19th
century and early 20th century. Larger-scale cloud systems
and associated cloud patterns often manifest at scales much
larger than the field of view of a surface observer and with a
few notable exceptions (e.g. Graham, 1934) it has only been
in the past 70 yr that intensive study of cloud and weather
systems has been made possible through computers, weather
radars and, since the 1960s, satellite-borne cameras and re-
mote sensors (Agee, 1984).

Rather than address weather patterns, this paper concerns
itself with commonly observed patterns in cloud systems on
scales ofO(10–1000 km). The motivation of this study is to
show that cloud systems often organize in ways that are com-
mon to other natural systems. Specifically, it addresses the
phenomenon of synchronization within cloud systems. As is
the case in other animate or inanimate systems, interactions
between components of the system result in a system-wide
emergence of order. When the components of the system are
sufficiently well coupled, synchronization can result in par-
ticularly fascinating cloud patterns that constantly regenerate
themselves (Feingold et al., 2010; Koren and Feingold, 2011,
2013) and are quite resilient to perturbation.

In the work presented below, we will apply a simple set
of non-linear equations originally used to describe a cloud
system(Koren and Feingold, 2011) to each of the individual
clouds or cloudy elements comprising the system. The indi-
vidual cloud elements grow, decay as they lose water via rain,
and regenerate, much as they might in nature; each cloud
element behaves as a non-harmonic oscillator. In addition,
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the individual clouds are coupled to one another through the
surface convergence (or divergence) flows associated with
growing (or decaying) clouds. The system can therefore be
described as a set of locally coupled oscillators. Earlier stud-
ies of such systems include Sakaguchi et al. (1987) and Bla-
sius et al. (1999).

In Koren and Feingold (2011), parameters of the equa-
tion set were varied over a large range to identify differ-
ent modes of behaviour (i) stable, non-precipitating; (ii) sta-
ble, weakly precipitating; (iii) strongly precipitating clouds
with stable oscillations; and (iv) explosive growth. Because
it is precipitation that drives downdrafts and surface diver-
gence/convergence and therefore the potential mechanism
for coupling, the focus here will be on the strongly precip-
itating state. We will demonstrate that coupling strength has
significant influence on the system. Through a series of ide-
alized one-dimensional tests we explore some of the param-
eters that influence system order. Results are extended to two
dimensions and analogs to natural cloud systems are dis-
cussed.

2 Model description

Koren and Feingold (2011), henceforth KF, presented an
adaptation of the predator–prey equations, applied to a cloud
system, consisting of three equations for cloud depthH , drop
concentrationN and rain rateR:

dH

dt
=

H0 − H

τ1
−

αH 2

c1N
, (1)

dN

dt
=

N0 − N

τ2
− c2NR (2)

and,

R(t) =
αH 3(t − T )

N(t − T )
, (3)

wherec1 is a temperature-dependent constant, andc2 and
α are constants based on theory.H0 is the meteorologi-
cal “carrying-capacity”, i.e. theH that would be reached
within a few timescales (τ1) in the absence of rain-related
losses. Similarly,N0 is the drop (or aerosol) concentration
“carrying-capacity” that the system would reach in a fewτ2
in the absence of rain. A full description of the terms, and
their values and units can be found in KF.N andR are as-
sumed to be constant with height, which suffices for the cur-
rent application (see KF). We note thatR is diagnosed from
the prognostic variablesH andN . The delay function en-
sures that the currentR is a function of the conditions at an
earlier time;T represents the time required for cloud wa-
ter to be converted to rainwater by collision and coalescence
between drops (T ∼ 15− 20 min). The approach is similar
to other work that has applied simplified equation sets to
help understand atmospheric systems (Wacker, 2006; Gar-
rett, 2012), and is in the spirit of the pioneering work of
Lorenz (1963).

In the current work, we apply Eqs. (1)–(3) to individual
cloud cells, each evolving through its individual life cycle,
and connected through a coupling term (to be described be-
low). We consider cloud cells on a grid (i, j ) so thatH , N ,
andR in Eqs. (1)–(3) are replaced byHi,j , Ni,j andRi,j .
Thus we have

dHi,j

dt
=

H0,i,j − Hi,j

τ1
−

αH 2
i,j

c1Ni,j

+

I∑
m6=i

I∑
n6=j

ηm,nḢm,n(t − τc,m,n) (4)

dNi,j

dt
=

N0,i,j − Ni,j

τ2
− c2Ni,jRi,j (5)

and

Ri,j (t) =
αH 3

i,j (t − T )

Ni,j (t − T )
, (6)

where ηi,j is the coupling strength,Ḣi,j the time rate of
change ofHi,j for cloud oscillatori, j , and the time con-
stantτc,i,j is associated with the time it takes for air to move
from an adjacent cell to celli, j . System coupling is clearly
the product of theη andḢ terms, i.e. changes inH are an
essential part of the coupling.

Manifestation of the interaction between the individual
cloud cells might occur in nature in a number of ways:
(i) a buoyant, growing cloud cell is associated with up-
ward motion and therefore surface convergence of air within
some radius of influence. Similarly a decaying cloud cell that
is discharging rain is associated with downdrafts and sur-
face divergence. Through arguments of mass continuity, con-
vergence or divergence will influence neighbouring clouds;
(ii) individual cloud cells progressing through their life cy-
cles all interact with their environment by redistributing heat
and moisture, and consuming instability (e.g. Nober and
Graf, 2005). The environment thus mediates the growth of
the individual cloud cells. We focus here on the first of these
coupling mechanisms since Nober and Graf (2005) have to
some extent addressed the first within the framework of a pa-
rameterization of atmospheric convection.

The sign of the coupling terms is such that if an adja-
cent cloud (e.g.Hi−1,j or Hi+1,j ) is decaying (̇H < 0), it
increases the rate of growth ofHi,j , whereas if an adjacent
cloud is growing (Ḣ > 0), it suppresses the growth ofHi,j ;
thus, the results of practical interest are forηi,j < 0. On a
spatial grid of unspecified dimension,τc,i,j determines the
length scale of the resulting features, provided one has some
information on the velocity of the flow, which in cloud sys-
tems isO(10ms−1) for horizontal flow andO(1ms−1) for
vertical flow. Such specificity seems premature and at this
stage we do not delve into details of spatial scale of features.
The situation is further complicated by the fact thatτc,i,j is
expected to decrease aṡHi,j increases but again we defer
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such exercises to a later stage. Finally, horizontal flow is a
result of cloud couplings only; we assume no additional hor-
izontal wind, or wind shear, which would break the pattern
formation.

A simple one-dimensional schematic of the coupled sys-
tem is shown in Fig. 1. Growing clouds are positively buoy-
ant and associated with updrafts. Once clouds thicken suffi-
ciently to generate rain, the evaporating rainfall evaporates,
causing colder and denser, downward moving air. Down-
drafts reaching the surface are forced to diverge, providing
the opportunity for interaction between the cells as outflows
converge at the surface. Note that some cloud systems are
capped by a strong inversion, which although not impen-
etrable, acts much like the rigid surface boundary. This is
implicitly accounted for in two ways: (i) a growing cloud,
such as the one at centre top in Fig. 1, will tend to hasten
the demise of adjacent cells, either by dragging surface air
from those clouds, and/or by generating subsiding air from
above. (We make no distinction between these mechanisms
here.) (ii) The formulation to some extent includes this up-
per boundary via theH0,i,j parameter: an approximately con-
stant value implies that vertical development is capped, much
as in stratocumulus clouds, unless contributions from adja-
cent cloud elements are particularly strong (e.g. for large|η|).
For cases with highly variableH0,i,j as in the case of a field
of cumulus clouds, rising air motions can manifest as much
deeper clouds, and there exists significant variability inHi,j .
We defer discussion of cumulus cloud field analogs to later
work.

In the subsequent calculations, it will be assumed, for sim-
plicity that a cloud oscillator is only directly affected by its
closest neighbours so that for a one-dimensional system, the
summation term on the right hand side of Eq. (4) reduces to
contributions from two neighbouring cellsi − 1 and i + 1,
and for a two-dimensional system, it includes contributions
from eight adjacent points on a square grid or 6 adjacent
points on an hexagonal grid. Coupling is weighted by the
distance from cloud (i,j ); for a a square grid of unit length,
adjacent points are weighted by unity and diagonal points
are weighted by (1/

√
2); on an hexagonal grid, all adjacent

points have equal weighting. Calculations that include cou-
pling with oscillators farther afield, and with 1/(distance)2

weighting have also been performed, and while the qualita-
tive nature of the results is often much the same, on occasion,
this might cause a system to shift into a different mode.

For simplicity we assumeτc,i,j = τc = constant andηi,j

= η = constant for any given simulation, unless otherwise
noted. Thus the temporal variation in the coupling is deter-
mined by theḢ terms. The discrete derivatives are calculated
over1t = 5 s, and updated every time step. Tests with differ-
ent time intervals showed that results are not particularly sen-
sitive, provided the interval does not span values approach-
ing T or τc. Lateral boundaries are assumed to be rigid, i.e.
oscillatorsi (or j ) = 1 andi (or j )= I , only experience influ-

Fig. 1.Schematic showing how each cloud element is coupled to its
neighbours via airflow associated with up or downward movement.
For simplicity, the cloud elements are depicted as separate clouds,
although for stratocumulus clouds, cloud cover might be full. Note
that growing clouds are positively buoyant and are associated with
upward movement. Raining clouds are negatively buoyant as a re-
sult of the evaporative cooling of precipitation. Downdrafts reaching
the surface are forced to diverge.

ence from neighbouring oscillatori + 1 (or j + 1) andI − 1,
respectively.

The system of Eqs. (4)–(6) is represented by five primary
parameters,H0, N0, τ1, τ2, T , and two coupling-related pa-
rametersη andτc. Fortunately, many years of boundary layer
cloud research provide guidance for these choices for given
meteorological conditions. The examples to be presented be-
low draw on that experience but are presented as phenomeno-
logical illustrations and for the most part do not attempt to
mimic detailed simulation or observation. Instead the focus is
on showing how a simple set of equations can represent pre-
viously documented emergent aspects of a coupled aerosol–
cloud–precipitation system. The problem is similar in prin-
ciple to earlier theoretical treatments of locally coupled sys-
tems (e.g. Sakaguchi et al., 1987 or Blasius et al., 1999) al-
though the (multiple) delay timesT and τc add significant
complexity and the potential for multiple synchronized solu-
tions (e.g. Schuster and Wagner, 1989).

3 Results

Since parameter space forH0, N0, τ1, τ2, andT , was ex-
plored in KF, we focus here on the coupling parametersη

andτc. A base case simulation is chosen with the same pa-
rameters as those chosen in KF’s Fig. 7 (H0 = 670 m;N0 =

515 cm−3, τ1 = 80 min,τ2 = 84 min, andT = 21.5 min) and
the influence ofη andτc is explored. Unless otherwise stated,
these will be the parameters of choice in subsequent simula-
tions. A constantH0 implies constant frequency content for
each of thei, j non-harmonic cloud oscillators in the ab-
sence of coupling; Gaussian distribution ofH0 is used in the
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two-dimensional examples as noted below. These parameters
tend to create clouds withH ≈ 500 m andR ≈ 5 mmd−1,
similar to what one might find in precipitating stratocumu-
lus clouds (e.g. Feingold et al., 2010). The weakly- or non-
precipitating regime tends to occur for smallerH0 and/or
largerN0 and was explored fairly extensively in KF. Because
precipitation drives strong changes iṅH , and therefore cou-
pling strength, we prefer to focus on a more strongly precip-
itating case. However, as will be shown below, our systems
typically start out with little or weak precipitation (based on
initial conditions) and only later evolve to strongly precip-
itating solutions, thus affording us the opportunity to study
both.

The duration of simulations is typically 1000 min (≈ 17 h),
which is usually sufficient to explore robust solutions, and
is also an atmospherically relevant time frame. On occasion
these simulations have been extended for twice as long to
persuade ourselves that the results are representative.

It is expeditious to demonstrate some basic ideas with a
one-dimensional array before moving to the two-dimensional
array. In the interests of brevity, results focus entirely on
cloud depthH ; for a qualitative idea ofR andN behaviour,
we note that theR field lags that ofH by ∼ T , and theN
field is anticorrelated withR (see KF).

3.1 Oscillators in a one-dimensional array

3.1.1 Illustrative examples

We start with results for 21 coupled oscillators all with con-
stant H0 distributed along a line forη = −0.51 andτc =

5 min (∼ 1/4× T ; Fig. 2). For atmospheric conditions this
τc is probably too small but is a useful start point. For clarity,
only a sample of the 21 oscillators are included. Red lines are
for i = 5 andi = 7 and black lines are fori = 10 andi = 12.

During the first part of the simulation all oscillators
quickly enter a coupled state withH ≈ 500 m. It is of inter-
est that these individual cloud elements have much smaller
amplitude excursions than the KF simulation for the same
conditions (their Fig. 7), but applied to the entire system
(Eqs. 1–3). Thus for this configuration, the coupling of the
individual elements tends to provide a strong stabilizing in-
fluence on the system. At about 375 min, the odd (red line)
oscillators begin to amplify their oscillation, due to the devel-
opment of an instability. (This disturbance can be reproduced
under multiple different conditions and is therefore regarded
as meaningful.) This in turn perturbs the even (black line)
oscillators. By about 440 min, the odd oscillators have much
the same frequency and phase as the even oscillators, how-
ever the odd and even sets are locked in opposite phase, as
one might expect from Fig. 1. Their amplitude excursion is
large with clouds reaching close to 1500 m by 1000 min (i.e.
significantly larger than experienced in KF’s Fig. 7, where
the maximumH was about 550 m). The extent to whichHi

can exceedH0 is related to the magnitude of|η| (Eq. 4).

Fig. 2. One-dimensional solution to the equations forI = 21, τc =

5 min (∼ 0.25× the microphysical delayT ), andη = −0.51. Red
lines: i = 5 andi = 7; black lines:i = 10 andi = 12. Initially all
clouds are synchronized withH ' 500 m. At about 380 min red
lines and black lines diverge. Soon after, odd oscillators (red) are
in phase, but out of phase with even oscillators (black). According
to Fig. 1, this represents a cloud growing at the expense of its neigh-
bours.

Fig. 3. One-dimensional solution to the equations forI = 21, τc =

10.75 min (0.5T ), andη = −0.48. Red lines:i = 5 andi = 7; black
lines: i = 6 andi = 8. As in Fig. 2, all clouds are initially synchro-
nized withH ' 500 m. System undergoes a period of no phase or
frequency coherence from about 400–600 min. Thereafter the sys-
tem behaves much like Fig. 2 with clouds growing at the expense
of their neighbours. Note the slower frequency of oscillation asso-
ciated with the longerτc.

We now increaseτc to 10.75 min (1/2×T ) and decreaseη
to −0.48 (Fig. 3). The selected oscillators are 5; 7 (red) and
6; 8 (black). Figure 3 again shows almost constantH during
the early part of the simulation, and as in Fig. 2, development
of instability. This time, however, all four selected oscillators
experience a period of time (∼ 400 to∼ 600 min) when there
is little coherence in frequency or phase. After∼ 600 min,
behaviour is similar to that in Fig. 2, albeit with a slightly
lower frequency, due to the increase inτc. While analyzing
the model output we found that oscillators 10 and 12 never
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Fig. 4. One dimensional solution to the equations for I =21, c = 10.75 min (0.5 T ), and = -0.54 broken into 200 min time sections. (a) 800
< t < 1000 min, (b) 1400 < t < 1600 min, (c) 1800 < t < 2000 min. Black lines in (a), (b), (c) are for i = 3, 5, 7,...., 19. Most clouds are out
of phase with one another but with the passage of time (a – c) all oscillators are entrained to the same phase. (d) 1800 < t < 2000 min; red
lines: i=5 and i=7; black lines: i=10 and i=12. Adjacent clouds are out of phase.

Fig. 4. One-dimensional solution to the equations forI = 21, τc = 10.75 min (0.5T ), andη = −0.54 broken into 200 min time sections.
(a) 800< t < 1000 min,(b) 1400< t < 1600 min,(c) 1800< t < 2000 min. Black lines in(a), (b), (c) are fori = 3,5,7, . . . ,19. Most clouds
are out of phase with one another but with the passage of time(a–c)all oscillators are entrained to the same phase.(d) 1800< t < 2000 min;
red lines:i = 5 andi = 7; black lines:i = 10 andi = 12. Adjacent clouds are out of phase.

develop coherent oscillations over the 1000 min simulation.
To explore this further we increase|η| to −0.54, while re-
tainingτc = 10.75 min. Figure 4a, b and c show a set of odd
numbered oscillators (3,5, . . . ,19) over three 200 min sec-
tions of an extended (2000 min) time series. One can clearly
see that while the cloud elements are initially out of phase,
with the progression of time, some begin to lock into phase,
and by 1800 min all have similar phase and frequency. Fig-
ure 4c shows that during this final stage of the simulation, red
oscillators (5; 7) are out of phase with even oscillators (10;
12), similar to Figs. 2 and 3. Cloud depthsHi,j are signifi-
cantly higher than in Fig. 3 because of the larger|η|. For the
case under discussion,H of up to∼ 5×H0 can be sustained
before the system becomes unstable.

Note that the increase in|η| from −0.48 to−0.54 does not
result in an acceleration of the entrainment of all the oscilla-
tors to a common frequency. First, this is because the added
forcing terms associated withη have a strong influence on
each individualHi , which then feeds back toNi andRi , and
changes the inherent frequency of the oscillator. Second, the
system has the added complexity of both the microphysical
delayT and the coupling delayτc, superimposed on the me-
teorological and drop concentration timescales (τ1 andτ2);
this has the potential to produce a multitude of synchronized
solutions (Schuster and Wagner, 1989).

Figure 4 intimates the possibility of a threshold of|η|,
above which the system might exhibit stronger coherence.
Figure 5 is the same as Fig. 4d but with|η| reduced to
−0.53. Indeed one sees how this small change has signifi-
cant influence on the individual components of the system;
the even (black) oscillators (10; 12) are approximately in
phase, whereas the odd (red) oscillators (5; 7) exhibit mul-
tiple modes deriving from the various terms in Eq. (4) with
their different frequencies. The threshold behaviour mani-
fested in the differences in results between Figs. 4 and 5 is
reminiscent of the Sakaguchi et al. (1987) model, as will be
discussed in Sect. 4.1.

In the next simulations we increase the value ofτc to
43 min (2× T ) and setη = −0.63. In addition to the fur-
ther reduction in frequency compared to smallerτc, the most
striking feature of this simulation is that the odd (red) oscilla-
tors (5; 7) and even (black) oscillators (6; 8) all have similar
phase and frequency (Fig. 6). Further examination indicates
that this is generally true, regardless of the specific choice
of oscillators. This response is distinctly different from the
previous examples (at shorterτc) where adjacent cloud ele-
ments tended to be out of phase. We repeat the simulation
but reduce|η| to −0.621 (Fig. 7). In this case the oscillators
are incoherent from 550 to 1000 min (Fig. 7a). Extending the
simulation out to 2000 min shows that there are periods of
time when the adjacent cloud elements prefer to be out of
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Fig. 5.As in Fig. 4 but with|η| reduced to−0.53. The small reduc-
tion in |η| results in incoherent oscillations and suggests a threshold
for synchronization.

Fig. 6. One-dimensional solution to the equations forI = 21, τc =

43 min (2× T ), andη = −0.63. Red lines:i = 5 andi = 7; black
lines:i = 6 andi = 8. All clouds are synchronized over the duration
of the simulation.

phase (Fig. 7b; 1400–1600 min), but that this is short-lived
and incoherent oscillations return (Fig. 7c; 1800–2000 min).

3.1.2 Sensitivity to coupling strength

We now provide a broader analysis of the system for dif-
ferent levels of coupling strengthη. For the base conditions
used above (H0 = 670 m;N0 = 515 cm−3, τ1 = 80 min,τ2 =

84 min, andT = 21.5 min), a series of many simulations cov-
ering 0.1 ≤ |η| ≤ 0.6 were performed at small increments in
η to probe the system more deeply. The number of clouds
was increased to 41, in recognition of the dependence of
system-wide order on the number of oscillators (Sakaguchi et
al., 1987). The size of theη increment was adjusted in the re-
gion of particularly interesting and/or transitional behaviour.
Before delving into the broader analysis, an illustrative ex-
ample upon which some of the subsequent analysis rests is
shown forη = −0.53 (Fig. 8). As shown below this choice
of η gives the maximum system coherence. The time evolu-

Feingold and Koren: Coupled oscillators in the cloud system 15

Fig. 7.As in Fig. 6, but for | | reduced to -0.621. (a) 0< t < 1000 min; prior to∼ 400 min oscillators are in phase but after that are incoherent;
(b) 1400 < t < 1600 min, adjacent oscillators prefer to be out of phase; (c) 1800 < t < 2000 min, a return to incoherent oscillations.Fig. 7. As in Fig. 6, but for|η| reduced to−0.621. (a) 0 < t <

1000 min; prior to∼ 400 min oscillators are in phase but after that
are incoherent;(b) 1400< t < 1600 min, adjacent oscillators prefer
to be out of phase;(c) 1800< t < 2000 min, a return to incoherent
oscillations.

tion of Hi for i = 1,5, and 21 is shown in Fig. 8a, followed
by a pair of matrices of the maximum correlation between
a pair of cloudsi, i′ (Fig. 8b) and the lag time (in min) at
which this maximum correlation occurs (Fig. 8c). The cor-
relation matrix shows that large parts of the cloud field are
highly correlated (r > 0.9) but with variability in the time
lags (e.g. lower left quadrant of Fig. 8c). In regions of highr,
the chequered pattern in the lag matrix is indicative of clouds
that are in phase (highr and close to zero lag) alternating
with clouds that are out of phase, as seen in earlier illustrative
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Fig. 8. Illustrative example for a one-dimensional array of 41 clouds
andη = −0.53: (a) time series fori = 1 (blue), 5 (red), 35 (black);
(b) cross-correlation matrix where the position in the matrix indi-
cates the maximum correlationr between any pair of clouds;(c) the
cross-lag matrix showing the time lag at which the maximumr in
(b) occurs.

examples. In general, high correlation and smooth patterns in
the lag matrix are indicative of coherence. Sometimes alter-
nating “warm” and “cool” colours follow a snake-like pat-
tern suggesting a deeper underlying structure. Parts of the
domain, in the vicinity ofi = 20, are characterized by rela-
tively poor correlation (0.6 < r < 0.7), with no concomitant
structure in the lag matrix.

A broader view of the system is now shown for a few se-
lectη (= −0.3,−0.475,−0.53, and−0.55062) that illustrate
characteristic modes of behaviour (Fig. 9). Analysis is per-
formed over the latter part of the simulation period (1188–
2000 min). The frequency plots (first column) show the aver-
age of the periodicities of each of the 41 clouds based on the
power spectra. The amplitude of these plots is another mea-
sure of the coherence of the system. They show a distinct
shift from a dominant period of 80 min atη = −0.3, with a
gradual shift to∼ 60 min at the higher|η|. The strong peak in
spectral density atη = −0.53 reflects the maximum system
coherence (see also Fig. 8). Further increases in|η| result in
unstable, explosive growth of the clouds. (Note we were not
able to achieve stable solutions for this set of conditions for
|η| > 0.550627.) Column 2 of Fig. 9 presents another view of
the cloud system in polar coordinates of correlation (radius
of the circle) and phase (angle between 0 and 2π ). The fre-
quency and phase of cloudi = 1 was used as a reference os-
cillator, against which each of the 41 clouds were compared.
Phase lags between 0 and 90◦ and 0 and 270◦ occur because
neither the reference cloud oscillator, nor the others are fixed.
With increasing|η| the system moves from one with rela-
tively low correlation to a highly correlated and more coher-
ent system atη = −0.53. As we approach the solutions with
largest permissible|η|, correlation decreases significantly. At
this point a few clouds experience very large amplitude os-
cillations, in contrast to the situation at lower|η| when the
Hi are more homogeneous (figures not shown). Column 3 of
Fig. 9 presents a histogram of the correlation matrix (e.g. a
summary of correlations such as those in Fig. 8a), provid-
ing further evidence of the initial migration to larger corre-
lation as|η| increases, followed by significant decrease in
correlation close to the unstable, strongly coupled state. The
last column of Fig. 9 summarizes the correlation and lag ma-
trices as two-dimensional probability distribution functions
with correlation on the vertical axis and lag on the horizontal
access. As the coupling strength increases there is a steady
decrease in the time lags associated with maximum correla-
tion, to some extent because of the shift to shorter periodic-
ity (first column Fig. 9). The strong order in the system at
η = −0.53 is shown in a compact fashion.

3.2 Oscillators in a two-dimensional array

Simulations are extended to two dimensions as specified
by Eqs. (4)–(6). Rather than explore concepts addressed in
Sect. 3.1, we turn our attention instead to pattern develop-
ment in cloud systems experiencing significant precipitation,
as studied by Feingold et al. (2010), Koren and Feingold
(2011, 2013). Through a combination of large eddy simula-
tion and satellite observation, those studies demonstrated that
non-precipitating clouds achieve an approximately steady
state in which losses of water to evaporation and precipita-
tion are balanced by condensation of water. The clouds take
on a closed cellular pattern that maintains a fixed structure
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Fig. 9. Summary of the influence ofη on an array of 41 clouds forη = −0.3000,−0.4750,−0.5300, and−0.5506 (top to bottom in
any column). Column 1: average power spectral density in the time domain; Column 2: phase and correlation of the 41 clouds relative
to the frequency and phase of cloud 1; Column 3: histogram of the correlations comprising the cross-correlation matrix (e.g. Fig. 8b);
Column 4: two-dimensional probability distribution function of the correlation and lag based on the cross-correlation and cross-lag matrices.
The progression to larger|η| is initially associated with an increase in system coherence and correlation (first 3 rows) but at sufficiently large
|η| (= −0.5506), there is a shift to an unstable system with poorer coherence and correlation. In this state, a few clouds have very largeHi

and the system cannot support further increases in|η| without exploding.

over long periods of time (∼ day). In contrast, in the pres-
ence of strong precipitation, the cloud system experiences
repeated larger amplitude cycles of cloud water build-up fol-
lowed by significant reduction in cloud water by rain, akin
to a predator–prey cycle. The precipitating cloud pattern is
an open-cell structure that constantly rearranges itself as
positively buoyant cloudy regions produce rain that gener-
ates negative buoyancy. Here we attempt to reproduce these
modes with the equations on a two-dimensional array.

We focus on larger values ofτc since these are likely
more relevant to boundary layer cloud systems exhibiting
mesoscale cellular convection. (Shorter, variable coupling
times are more appropriate to cumulus cloud fields and will
be explored in later work.)

The first example uses the same base conditions used in
Sect. 3.1 (H0 = 670 m; N0 = 515 cm−3, τ1 = 80 min, τ2 =

84 min, andT = 21.5 min) withτc = 43 min andη = −0.20.
To provide a little more realism to the simulations a small
amount of spatial variability is added toH0 (±100 m) and
to η (±0.03), and maintained for the duration of the simula-
tion. The variability inH0 translates to a spread in the fre-
quency distribution of the cloud oscillators, as in other theo-
retical studies. The relatively large number of individual os-

cillators, even for a 21× 21 grid, calls for alternate ways of
displaying the model output. For the first, we use the “Hov-
möller” diagram, commonly applied in meteorological anal-
ysis (Fig. 10), to display the of progression ofHi,j (t). The
figure shows the spatial dimension on the abscissa and time
on the ordinate. To do so, some degree of averaging is per-
formed over thej (y) dimension, in this case, over all 21j
points. Because there is no preferred symmetry in the current
equation set, the main features of the field manifest when ei-
ther thei or the j dimension is displayed on the abscissa,
although they are not the same.

For the first 350 min of simulation, the cloud field is char-
acterized by a spatially rigid structure. The field rises and
falls in unison but the relative heights ofHi,j are approx-
imately constant with time, as borne out by the series of
snapshots in Fig. 11. This reflects a frequency and phase
coherence of all the oscillators, akin to the early stages of
simulations in Figs. 2 and 3, or the duration of Fig. 6. Af-
ter ∼ 400 min, the rigid structure is broken by the (delayed)
effects of stronger rainfall; large values ofHi,j are replaced
by small values, both spatially and temporally, and the cloud
field constantly rearranges itself with a period of∼ 90 min.
The migration in time of the peaks inH is reminiscent of the
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Fig. 10. Two-dimensional simulations (21× 21 oscillators) with
τc = 43 min (2× T ), η = −0.20± 0.03 andH0 = 670m± 100m.
The display shows contours ofHi,j as a function ofi (x distance;
abscissa) and time (ordinate). The linear colour scale is from 0 to
800 m (purple through red/brown) Model output has been averaged
over allj -grid points. Prior to about 300 min the all components are
synchronized and rise and sink in unison (see also Fig. 11). There-
after, the spatial symmetry is broken by the onset of rain and a grid-
ded structure merges depicting spatiotemporal oscillations inHi,j .

“travelling wave structure” discussed by Blasius et al. (1999)
for coupled ecological systems.

The individual snapshots associated with the rearranging
cloud field are examined more closely with a second two-
dimensional case that exhibits this more clearly. Conditions
are the same as in Figs. 10 and 11 but|η| is increased to
−0.22± −0.03. In addition, the domain size is increased
to 41× 41 points to allow more structure to develop. As in
Figs. 10 and 11, this case starts out as a non-precipitating
system with a temporally invariant structure. Strong rain de-
velops from thick clouds and forces cellular cloud structures
that rearrange with similar periodicity (∼ 2× τc; Fig. 12).
The cell-like structure and their rearrangement has been do-
cumented in large eddy simulation of cloud fields (Feingold
et al., 2010) and in geostationary satellite imagery (Koren
and Feingold, 2013), with similar periodicity (see Sect. 4).

4 Discussion

4.1 Threshold behaviour

Threshold behaviour is prevalent in the system of equations
under discussion – in both one- and two-dimensional cases.
In the simulations shown here and in our experience with

(a)

(b)

(c)

Fig. 11. Snapshots of model output associated with Fig. 10 at
(a) 200 min, (b) 250 min, and(c) 300 min. Horizontal axes arex
andy distances (or grid numberi, j ). Vertical axes are height in m.
Note the temporal invariance of the structure.

the many other simulations performed, small changes in cou-
pling strengthη result in a rapid transition from incoherent
to synchronized oscillations. However, further increases inη

lead to unconstrained growth inHi,j to unrealistically high
values and instability of the system. The fact that the cloud
oscillators are non-harmonic, and also include delays, makes
for a rather complex system; individual oscillators have mul-
tiple intrinsic frequencies and their interaction can generate
constructive or destructive coupling, with the result that the
system can migrate from an ordered to a chaotic state de-
pending on the specified parameters. In cloud systems, rain
itself exhibits threshold behaviour (e.g. Kessler, 1969), which
generates threshold behaviour iṅH . This likely influences
the timing of coupling and therefore the manifestation of syn-
chronization.
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(a)

(b)

(c)

Fig. 12. As in Fig. 11 but for larger domain (I = 41) andη =

−0.22± 0.03 at (a) 840 min, (b) 880 min, and(c) 920 min. Note
the rearrangement of the cells as regions of highH rain out and
convert to lowH .

The connection to the work of Sakaguchi et al. (1987),
Blasius et al. (1999) and to a host of other more recent stud-
ies in a wide range of disciplines is quite clear. One study in
the field of atmospheric physics of particular interest (Yair
et al., 2009) showed how component clouds in a lightning
storm tend to discharge in unison when the group coupling
strength in the network is higher than a threshold value. In
that study, the coupling occurred through a network-wide
sharing of the change in the electric field strengthE follow-
ing a lightning strike at a given location in the system: an in-
dividual cloud element (i, j ) in the evolution of its life cycle
of E, experienced a contribution1E based on its distance
to the cloud experiencing discharge. In their case coupling
is global, as in Kuramoto (1975). In the case of electrified
cloud systems, the delay time for communication of1E is
extremely short (seconds or fraction thereof), thus facilitat-
ing the communication across large distances (order 100 km).
The analogy to our system is clear: individual clouds evolve
through their life cycle ofH and experience some positive
or negative contribution to their growth based on inflows or
outflows from adjacent clouds. The analogy is strengthened

by the fact that in natural clouds, lightning is itself a func-
tion, inter alia, of the vertical development of the cloud and
the formation of rain. Therefore, both systems have similar
delay termsT (Eqs. 4–6). However, there are distinct differ-
ences in the manner in which these systems are coupled. In
the case of electric field build-up and discharge, communica-
tion is very rapid (τc → 0) while for evolution ofH , material
flow, limited by the atmosphere’s ability to move matter (air)
from one location to another, provides the vehicle for com-
munication, andτc is substantial.

4.2 Cloud patterns: mesoscale cellular convection

Vast areas of the mid-latitude and subtropical oceans are cov-
ered by shallow boundary layer clouds. On the western coasts
of continents where cold ocean currents prevail, the cloud
system tends to exist in a closed-cellular state characterized
by a high cloud fraction and high reflectance. The bright cel-
lular cloud structures denote upward moving air and have di-
mensions of order 10 km. They are ringed by narrow, darker
regions of downward moving air. These structures have been
tracked by geostationary satellites, and after removal of the
ambient wind, shown to be remarkably rigid in structure (Ko-
ren and Feingold, 2013). The sequence of cloud fields in
Fig. 11 sampled prior to about 350 min (Fig. 10) also main-
tain a rigid structure and can be considered to be an analog
to the closed-cellular state.

In stark contrast, over warmer ocean waters driven by sur-
face heating, cloud systems tend to have an open-cellular,
almost honeycomb-like structure with buoyant and reflec-
tive cloudy cells surrounding dark, negatively buoyant open-
cellular regions. Sometimes, open cells can be found over
cold oceans that prefer the closed-cellular state. In these
cases, rain has been shown to play a central role in creating
and maintaining this structure. Our earlier work has identi-
fied the presence of rain as being responsible for a spatiotem-
poral oscillation in the cloud field: positively buoyant clouds
thicken to the point that they can develop rain; rain falls and
evaporates below cloud, generating negative buoyancy and
downward airflow (downdrafts); at the surface, downdrafts
are forced to diverge; here they encounter outflows from ad-
jacent raining cells that result in surface convergence and
the formation of positively buoyant updrafts that generate
clouds, and so on. The conversion of cloud water (a proxy for
H ) to rain (R) thus forces positively buoyant air to become
negatively buoyant, resulting in a constant rearrangement in
the spatial structure of the cloud field. Figure 10 shows such
rearrangement after∼ 400 min when rain has become more
substantial. This is illustrated more clearly in Fig. 12 where
a larger value of|η| creates better spatial coherence. Similar
patterns can be seen in the output of cloud fields simulated
by large eddy simulation (Feingold et al., 2010), or in geo-
stationary satellite imagery (Koren and Feingold, 2013).
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5 Summary

We have extended the predator–prey equations for the
aerosol–cloud–precipitation system first presented by Koren
and Feingold (2011) to individual subcomponents of the sys-
tem and shown how solutions to the coupled system of equa-
tions act in ways that mimic some of the characteristics and
spatial patterns developed by computationally intensive large
eddy simulation and observed by satellite imagery. The in-
dividual cloud components can be considered “oscillators”;
they grow in depthH based on the meteorological environ-
ment that spawns them, and decay as cloud water is con-
verted to rainR. The atmospheric aerosol, represented here
by drop concentrationN acts to regulate the production of
rain. Our focus here is on a system that develops significant
amounts of precipitation because of the richness that it adds
to the coupled system via thėH terms in Eq. (4) (e.g. Fig. 1);
The individual cloud elements (oscillators) are influenced by
one another through the airflows associated with evaporating
precipitation. The negatively buoyant air in a raining cloud
moves toward the (rigid) lower surface where it is forced to
diverge. The outflows of adjacent cloud elements that are in
phase with one another will collide; this will generate up-
ward moving air in which new clouds will form. Adjacent
clouds that are out of phase will create a feedback that has-
tens the demise of the decaying cloud while simultaneously
fuelling the growth of the growing cloud (e.g. Figs. 2 and 3).
Exactly how these components interact depends on a number
of different parameters associated with the model equations.
The coupling strengthη and delay parametersT and τc in
particular have the potential to generate complex solutions.
The number of tunable parameters intimates the potential for
significant further study.

For the precipitating case under consideration, we have
shown that some degree of coupling can stabilize a cloud that
might have been unstable in the absence of coupling. Pro-
gressive increases in coupling strengthη tend to transform a
disorganized system of clouds to one exhibiting a high de-
gree of order. However, beyond this point, further increases
in coupling strength result in lower coherence and eventu-
ally explosive growth (Fig. 9). Sometimes behaviour is quite
complex (e.g. in Fig. 7 oscillators evolve from being incoher-
ent to an ordered state in which adjacent oscillators are out
of phase, only to migrate back to incoherence).

One of the exciting aspects of this study is that it opens up
the possibility for exploring spatial cloud patterns in a rel-
atively simple framework. The two-dimensional rigid cloud
structure (early stages of Fig. 10) is similar to the rigid struc-
tures generated by large eddy simulation and observed by
geostationary satellite for non-precipitating clouds; similarly
the spatiotemporal oscillations of the cloud field (later stages
of Figs. 10 and 12) are reminiscent of the same structures
simulated by large eddy models and observed by satellites
under precipitating conditions. This presents opportunity for
improved understanding of the robustness of these states and

the potential for transitions between them – a topic of great
interest for climate studies.
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