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Abstract. Fluid flow in underground formations is a nonlin-
ear process. In this article we modelled the nonlinear tran-
sient flow behaviour of well production in an underground
formation. Based on Darcy’s law and material balance equa-
tions, we used quadratic pressure gradients to deduce diffu-
sion equations and discuss the origins of nonlinear flow is-
sues. By introducing an effective-well-radius approach that
considers skin factor, we established a nonlinear flow model
for both gas and liquid (oil or water). The liquid flow model
was solved using a semi-analytical method, while the gas
flow model was solved using numerical simulations because
the diffusion equation of gas flow is a stealth function of pres-
sure. For liquid flow, a series of standard log-log type curves
of pressure transients were plotted and nonlinear transient
flow characteristics were analyzed. Qualitative and quantita-
tive analyses were used to compare the solutions of the linear
and nonlinear models. The effect of nonlinearity upon pres-
sure transients should not be ignored. For gas flow, pressure
transients were simulated and compared with oil flow under
the same formation and well conditions, resulting in the con-
clusion that, under the same volume rate production, oil wells
demand larger pressure drops than gas wells. Comparisons
between theoretical data and field data show that nonlinear
models will describe fluid flow in underground formations
realistically and accurately.

1 Introduction

Among the many nonlinear geophysical processes, transient
fluid flow through porous media is of particular interest (Cao
et al., 2004; Finjord, 1990; Finjord and Aadnoy, 1989; Gia-
chetti and Maroscia, 2008; Liang et al., 2001). This process,
which is of practical importance, is governed by the diffu-

sivity equation, an equation describing the nonlinearities re-
sulting from the dependence of fluid and medium properties
on pressure. When porosity, permeability and fluid density
depend exponentially on pressure, the diffusivity equation
reduces to a diffusion equation containing a squared gra-
dient term. Many published articles have described analyt-
ical solutions for this equation through variable modifica-
tions (Chakrabarty et al., 1993a, b; Jelmert and Vik, 1996;
Odeh and Babu, 1998; Wang and Dusseault, 1991), which
are special cases of the Hopf–Cole transformation (Marshall,
2009). Applications in dual-porosity (Bai et al., 1994; Bai
and Roegiers, 1994) and fractal (Tong and Wang, 2005) me-
dia have also been described. Pressure transients are graphic
plots of theoretical solutions for diffusion equations under
specific initial and boundary conditions for the well-test
model that represents a reservoir-well system (Chaudhry,
2004). Pressure transients were plotted according to these
analytical solutions and were used in the interpretation of
well-test transients (Braeuning et al., 1998). This research
showed that the quadratic pressure gradient term influenced
the pressure transient solutions. If the nonlinear term is ig-
nored, significant errors in predicted pressures during cer-
tain live oil and low permeability reservoir operations, such
as hydraulic fracturing, large-drawdown flows, slug testing,
drill-stem testing and large-pressure pulse testing will occur.
Even though the importance of nonlinearity has been heavily
emphasised, no application of modern well-test interpreta-
tion (Onur et al., 2003) on field data has been found; in fact,
a standard set of log-log type curves for modern well-test in-
terpretation has not been developed, except for type curves
for nonlinear spherical flow (Nie and Ding, 2010). In addi-
tion, there has not been any research or discussion on the
effects of quadratic pressure gradients on gas flow.
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312 J. C. Guo and R. S. Nie: Nonlinear flow model for well production

Therefore, the main tasks of this article is to (1) deduce
the nonlinear governing equations with the quadratic pres-
sure gradient term for both liquid and gas flow in porous
media and discuss the origins of the nonlinear flow issue;
(2) establish and solve a nonlinear flow model for well pro-
duction; (3) plot a series of standard type curves for wellbore
pressure-transient analysis for liquid flow in an underground
formation; (4) analyze the nonlinear flow characteristics of
liquid flow using type curves; (5) make qualitative and quan-
titative comparisons of pressure and its derivative transients
between nonlinear and linear liquid flow models; (6) simu-
late wellbore pressure transients for nonlinear gas flow using
numerical simulations and compare these pressure transients
with nonlinear oil flow under the same formation and well
conditions; and (7) match theoretical data from nonlinear and
linear models against field data to assess the differences be-
tween actual and theoretical applications. The results of this
research suggest the use of a nonlinear flow model in actual
studies.

Compared with previous publications, such as Cao et al.
(2004), Chakrabarty et al. (1993b), Marshall (2009), this re-
search highlights (1) newly considered use of real parameters
for wells with skin factor in nonlinear flow models; (2) appli-
cation of modern standard type curves to intuitively observe
nonlinear transient flow behaviour; (3) recognition of flow
regimes from type curves, including recognition of different
external boundary responses; (4) thorough analysis of param-
eter sensitivity to type curves; (5) use of quantitative methods
of “DV” and “RDV” to describe solution differences between
nonlinear and linear models; (6) establishment of numerical
modelling of nonlinear gas flow and simulation and compar-
ison of nonlinear gas and oil flow pressure transients; and (7)
consideration of real world applications through comparisons
of theoretical data and field data.

2 Nonlinear governing equation

2.1 Liquid flow

For vertical well production in a homogeneous formation,
flow in a vertical plane is not significant and a radial cylin-
drical coordinate system without a z coordinate can be em-
ployed to describe the diffusion equation:

1

r

∂

∂r

(
r
∂p

∂r

)
+Cρ

(
∂p

∂r

)2

=
10µϕCt

kh

∂p

∂t
, (1)

wherep is pressure, MPa;r is radial cylindrical coordinate,
cm; t is time, s;ϕ is rock porosity, fraction;k is radial per-
meability, µm2; µ is viscosity, mPas;Ct is total compressibi-
lity of rock and liquid, MPa−1; Cρ is liquid compressibility,
MPa−1.

The governing partial differential equation is nonlinear be-
cause of the quadratic pressure gradient term (i.e. the second
power of the pressure gradient in Eq. 1).

The appendix deduces the diffusivity equation containing
the quadratic gradient term when porosity and fluid density
depend exponentially on pressure (Marshall, 2009; Nie and
Ding, 2010):

ρ = ρ0e
Cρ (p−p0) , (2)

ϕ = ϕ0e
Cf(p−p0) , (3)

where ρ is density, gcm−3; Cf is rock compressibility,
MPa−1; ρ0, ϕ0, p0 are reference values, which are usually
used in standard conditions.

The functionex using Maclaurin series expansion can be
written by

ex = 1+ x+ x2/2+ . . .+ xn/n! + . . . . (4)

If we use Maclaurin series expansion for Eqs. (2) and (3) and
neglect second and higher order items, Eqs. (5) and (6) can
replace Eqs. (2) and (3), respectively

ρ = ρ0
[
1+Cρ (p−p0)

]
(5)

ϕ = ϕ0 [1+Cf (p−p0)] . (6)

Appearance of the quadratic pressure gradient term is due
to a lack of simplification in the state equations (Eqs. 2
and 3) when deducing the diffusion equation. If we use Eqs. 5
and (6), we obtain the conventional linear flow equation with-
out the quadratic pressure gradient term.

Therefore, the linear flow equation is an approximation
and simplification of the nonlinear flow equation which in-
cludes the quadratic pressure gradient term. In fact, flow of
liquid in porous media is a complex nonlinear process and
the nonlinear flow law is equal to the flow law of liquid in
porous media.

2.2 Gas flow

Gas flow in porous media is different from that of liquid due
to a different state equation for fluid (Nie et al., 2012a):

pV = ZnRT , (7)

whereV is gas volume, cm3; Z is a compressibility factor,
fraction;n is number of gas moles, mol;R is a universal gas
constant, J(molK)−1; T is gas temperature, K.

Gas volume is a function of mass and density:

V =
m

ρ
, (8)

wherem is gas mass, g;ρ is density, gcm−3.
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Number of gas moles is a function of mass and average
molecular weight:

n=
m

M
, (9)

whereM is average molecular weight of gas, gmol−1.
Substitute Eqs. (8) and (9) into Eq. (7):

ρ =
pM

ZRT
. (10)

We consider isothermal equations and Darcy’s flow and sub-
stitute Eq. (10) into Eq. (A3):

∂

∂x

(
pM

ZRT

kx

µ

∂p

∂x

)
+
∂

∂y

(
pM

ZRT

ky

µ

∂p

∂y

)
+
∂

∂z

(
pM

ZRT

kz

µ

∂p

∂z

)

= 10
∂

∂t

(
pM

ZRT
ϕ

)
, (11)

wherex, y, and z are Cartesian coordinates;kx is perme-
ability in the x direction, µm2; ky is permeability in they
direction, µm2; kz is permeability in thez direction, µm2.

We assume an elastic and slightly compressible rock and
isotropic and constant permeability in both the horizontal and
vertical plane:

∂

∂x

(
p

µZ

∂p
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)
+
∂

∂y

(
p

µZ

∂p

∂y

)
+
kz

kh

∂
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(
p

µZ

∂p
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)
=

10

kh

∂

∂t

(p
Z
ϕ
)
, (12)

wherekh is horizontal permeability that is equal tokx andky
is isotropic formation in the horizontal plane, µm2.

The partial differential terms in the left of Eq. (12) are ex-
pressed by

∂

∂j

(
p

µZ

∂p

∂j

)
=

1

2

1

µZ

∂2p2

∂j2
−
∂ ln(µZ)

∂p2

(
∂p2

∂j

)2
 ,

(j = x,y,z) . (13)

The partial differential term in the right of Eq. (12) is ex-
pressed by

∂

∂t

(p
Z
ϕ
)

=
p

Z

∂ϕ

∂t
+ϕ

∂

∂t

(p
Z

)
=
ϕCf

2Z

∂p2

∂t

+
ϕ

2Z

(
1

p
−

1

Z

∂Z

∂p

)
∂p2

∂t
. (14)

Gas isothermal compressibility is a function of pressure and
compressibility factor:

Cg =
1

p
−

1

Z

∂Z

∂p
. (15)

Substitute Eqs. (13–15) into Eq. (12):

∂2p2

∂x2
+
∂2p2

∂y2
+
kz

kh

∂2p2

∂z2
−
∂ ln(µZ)

∂p2

(∂p2

∂x

)2

+

(
∂p2

∂y

)2

+

(
∂p2

∂z

)2
=

10ϕµCt

kh

∂p2

∂t
, (16)

Ct = Cg +Cf , (17)

whereCg is gas compressibility, MPa−1; Ct is total com-
pressibility of rock and gas, MPa−1.

Equation (16) is a diffusion equation containing the
quadratic derivative term of pressure square in Cartesian co-
ordinates for gas flow in a homogeneous formation. Equa-
tion (16) shows that flow of gas in porous media is a nonlin-
ear process. Compared with the governing differential equa-
tion of liquid (Eq. 1), Eq. (16) shows a more complex non-
linear properties. It is difficult to solve this diffusion equa-
tion because the term of∂ ln(µZ)/∂p2 is a stealth function
of pressure and not a constant. Usually the pseudo-pressure
(or “potential”) function (Ertekin and Sung, 1989; King and
Ertekin, 1988; Nie et al., 2012a) can be used to describe the
governing equation of gas flow:

ψ =

∫ p

psc

1

µZ
dp2

= 2
∫ p

psc

p

µZ
dp, (18)

whereψ is gas pseudo-pressure, MPa2 (mPas−1)−1; psc is
pressure at standard conditions, MPa.

Derivatives of pseudo-pressure to coordinates can be ex-
pressed by

∂ψ

∂j
=

2p

µZ

∂p

∂j
, (j = x,y,z) . (19)

Derivative of pseudo-pressure to time can be expressed by

∂ψ

∂t
=

2p

µZ

∂p

∂t
. (20)

Substitute Eq. (20) into the right of Eq. (12):

10

kh

∂

∂t

(p
Z
ϕ
)

=
10

kh

p

Z
ϕ

[
Cf +

(
1−

p

Z

∂Z

∂p

)]
∂p

∂t

=
10

kh

ϕµCt

2

∂ψ

∂t
. (21)

Substitute Eq. (19) into the left of Eq. (12):

∂

∂x

(
p

µZ

∂p

∂x

)
+
∂

∂y

(
p

µZ

∂p

∂y

)
+
kz

kh

∂
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(
p

µZ

∂p
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)

=
1

2

(
∂2ψ

∂x2
+
∂2ψ

∂y2
+
kz

kh

∂2ψ

∂z2

)
. (22)
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Then, the diffusion equation expressed by gas pseudo-
pressure can be obtained by

∂2ψ

∂x2
+
∂2ψ

∂y2
+
kz

kh

∂2ψ

∂z2
=

10ϕµCt

kh

∂ψ

∂t
. (23)

Equation (23) is a diffusion equation without a quadratic
derivative term. According to Eqs. (15) and (17), total com-
pressibility of rock and gas is a stealth function of pressure
because gas compressibility is a stealth function of pressure.
In addition, gas viscosity is also a stealth function of pres-
sure. Therefore, Eq. (23) is still a nonlinear equation. This
nonlinear equation is very difficult to solve using analyti-
cal methods; however, a numerical approach will be imple-
mented.

3 Description of the nonlinear flow model

3.1 Physical model

Physical model assumptions:

1. Single vertical well production at a constant rate in a
homogeneous and isotropic formation saturated by a
single-phase fluid (gas, oil or water) and the external
boundary of formation may be infinite, closed or of con-
stant pressure.

2. Slightly compressible rock and liquid (oil or water) with
a constant compressibility are considered, while the
compressibility of gas changes with depletion of pres-
sure.

3. Isothermal equations and Darcy’s flow, ignoring the im-
pact of gravity and capillary forces.

4. Wellbore storage effect is considered when the well is
opened, while fluid stored in the wellbore starts to flow
and when fluid in formation does not.

5. Skin effect is considered near the wellbore where the
formation could be damaged by drilling and completion
operations (there could be an additional pressure drop
during production, with the “skin” being a reflection of
additional pressure drop).

6. At time t = 0, pressure is uniformly distributed in for-
mation, equal to initial pressure (pi).

3.2 Mathematical model

For the convenience of well-test analysis, the mathematical
model was established using a set of applied engineering
units.

3.2.1 Liquid flow in a formation

(1) Establishment of mathematical model

The governing differential equation in a radial cylindrical
system

1

r

∂

∂r

(
r
∂p

∂r

)
+Cρ

(
∂p

∂r

)2

=
µϕCt

3.6kh

∂p

∂t
, (24)

whereCρ is liquid compressibility, MPa−1; Ct is total com-
pressibility of rock and liquid, MPa−1; kh is radial formation
permeability, µm2; p is formation pressure, MPa;r is radial
radius from the centre of wellbore, m;t is well production
time, h.

Initial condition

p |t=0 = pi , (25)

wherepi is initial formation pressure, MPa.
Well production condition based on effective radius

kh

µ

(
r
∂p

∂r

)∣∣
r=rwa = 1.842× 10−3qB + 0.04421Cs

dpw

∂t
, (26)

whereB is oil volume factor, dimensionless;Cs is well-
bore storage coefficient, m3MPa−1; pw is wellbore pressure,
MPa;q is well rate at wellhead, m3d−1; rwa is effective well-
bore radius, m.

The effective wellbore radiusrwa is defined as (Agarwal et
al., 1970; Chaudhry, 2004)

rwa = rwe
−S , (27)

whererw is real wellbore radius, m;S is skin factor, dimen-
sionless.

External boundary conditions:

limp
∣∣
re→∞ = pi (infinite) , (28)

p
∣∣
r=re = pi (constantpressure) , (29)

∂p

∂r

∣∣
r=re = 0(closed) , (30)

wherere is external boundary radius, m.
The following dimensionless definitions are introduced to

solve the mathematical model:

Dimensionless pressure:
pD = kh(pi −p)/

(
1.842× 10−3qBµ

)
.

Skin factor:S = kh1ps/
(
1.842× 10−3qBµ

)
,

1ps is additional pressure drop near wellbore.
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Dimensionless radius based on effective well radius:
rD = r/

(
rwe

−S
)
.

Dimensionless radius of external boundary:
reD = re/

(
rwe

−S
)

.

Dimensionless wellbore storage coefficient:
CD = Cs/

(
6.2832ϕCthr

2
w

)
.

Dimensionless time:tD = 3.6kt/
(
ϕµCtr

2
w

)
.

Dimensionless coefficient of nonlinear term:
β =

(
1.842× 10−3qBµCρ

)
/(kh).

The dimensionless mathematical model is as follows:
Governing differential equation in a radial cylindrical sys-

tem equals

∂2pD

∂r2
D

+
1

rD

∂pD

∂rD
−β

(
∂pD

∂rD

)2

=
1(

CDe2S
) ∂pD

∂TD
, (31)

TD = tD/CD . (32)

Initial condition:

pD
∣∣
TD=0 = 0. (33)

Well production condition:

dpwD

dTD
−

(
∂pD

∂rD

)∣∣
rD=1 = 1, (34)

wherepwD is dimensionless wellbore pressure.
External boundary conditions:

limpD
∣∣
reD→∞ = 0(infinite) , (35)

pD
∣∣
rD=reD = 0(constant pressure) , (36)

∂pD

∂rD

∣∣
rD=reD = 0(closed) . (37)

(2) Linearization of dimensionless mathematical model

Equation (32) is a nonlinear partial differential equation.
The following variable modifications are introduced to solve
the dimensionless mathematical model (Nie and Ding, 2010;
Odeh and Babu, 1998):

pD = −
1

β
ln(ξ + 1) . (38)

Then

∂pD

∂rD
= −

1

β

1

(ξ + 1)

∂ξ

∂rD
, (39)

∂2pD

∂r2
D

=
1

β

1

(ξ + 1)2

(
∂ξ

∂rD

)2

−
1

β

1

(ξ + 1)

(
∂2ξ

∂r2
D

)
, (40)

(
∂pD

∂rD

)2

=
1

β2

1

(ξ + 1)2

(
∂ξ

∂rD

)2

, (41)

∂pD

∂TD
= −

1

β

1

(ξ + 1)

∂ξ

∂TD
. (42)

Substitute Eqs. (38)–(42) into Eqs. (31)–(37), the model can
be converted to

∂2ξ

∂r2
D

+
1

rD

∂ξ

∂rD
=

1(
CDe2S

) ∂ξ
∂TD

, (43)

ξ
∣∣
TD=0 = 0, (44)

(
∂ξ

∂rD
−
∂ξ

∂TD
−βξ

)∣∣
rD=1 = β , (45)

lim ξ
∣∣
reD→∞ = 0(infinite) , (46)

ξ
∣∣
rD=reD = 0(constant pressure) , (47)

∂ξ

∂rD

∣∣
rD=reD = 0(closed) . (48)

(3) Solution to dimensionless mathematical model

Introduce the Laplace transform based onTD:

L [ξ (rD,TD)] = ξ (rD,u)=

∞∫
0

ξ (rD,TD)e
−uTDdTD . (49)

The dimensionless mathematical model in Laplace space is
as follows:

d2ξ

dr2
D

+
1

rD

dξ

drD
=

u(
CDe2S

)ξ , (50)

dξ

drD

∣∣
rD=1 − (u+β)ξw =

β

u
, (51)
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lim ξ
∣∣
reD→∞ = 0(infinite) , (52)

ξ
∣∣
rD=reD = 0(constant pressure) , (53)

∂ξ

∂rD

∣∣
rD=reD = 0(closed) . (54)

The general solution of the Eq. (50) is

ξ = AI0
(
rD

√
ς
)
+BK0

(
rD

√
ς
)
, (55)

ς = u/
(
CDe

2S
)
. (56)

Substitute Eq. (55) into Eqs. (50) and (51):

I0
(√
ς
)
·A+K0

(√
ς
)
·B − ξw = 0, (57)

√
ςI1

(√
ς
)
·A−

√
ςK1

(√
ς
)
·B− (u+β)ξw = β/u. (58)

Substitute Eq. (55) into Eqs. (52)–(54):

lim
[
I0
(
reD

√
ς
)
·A+K0

(
reD

√
ς
)
·B
] ∣∣
reD→∞ = 0, (59)

I0
(
reD

√
ς
)
·A+K0

(
reD

√
ς
)
·B = 0, (60)

I1
(
reD

√
ς
)
·A−K1

(
reD

√
ς
)
·B = 0, (61)

whereA andB are undetermined coefficients;I0( ) is a mod-
ified Bessel function of the first kind, zero order;I1( ) is a
modified Bessel function of the first kind, first order;K0( )
is a modified Bessel function of the second kind, zero order;
K1( ) is a modified Bessel function of the second kind, first
order.

In Eqs. (57)–(61), there are three unknown numbers (A,
B, ξw) and three equations, solutions to the model in Laplace
space can be easily obtained by using linear algebra (Nie et
al., 2011a, b), such as a Gauss–Jordan reduction.

In real space,ξw and the derivative (dξw/dTD) can be ob-
tained using a Stehfest numerical inversion (Stehfest, 1970)
to convertξw back toξw, and then dimensionless wellbore
pressure (pwD) and the derivative (dpwD/dTD) can be ob-
tained by substitutingξw into Eq. (38). The standard log-log
type curves of well-test analysis (Nie et al., 2012b, c) ofpwD
and (p′

wD · tD/CD) vs. tD/CD can then be obtained.

3.2.2 Gas flow in a finite formation

(1) Establishment of mathematical model

Governing differential equation in a radial cylindrical system

∂2ψ

∂r2
+

1

r

∂ψ

∂r
=
ϕµCt

3.6k

∂ψ

∂t
, (62)

whereCt is total compressibility of rock and gas, MPa−1;
k is radial formation permeability, µm2; ψ is gas pseudo-
pressure, MPa2 (mPas)−1; r is radial radius from the centre
of wellbore, m;t is well production time, h.

Initial condition

ψ |t=0 = ψi = 2

pi∫
psc

pi

µiZi
dpi , (63)

where the subscript “i” means “initial”.
Well production condition based on effective radius

kh

µ

(
Z

2p
r
∂ψ

∂r

)∣∣
r=rwa − 0.04421Cs

µZ

2p

dψw

∂t

= 1.842× 10−3qg , (64)

whereCs is a wellbore storage coefficient, m3MPa−1; ψw is
wellbore pseudo-pressure, MPa2 (mPas)−1; qg is well rate at
bottom hole, m3d−1; rwa is effective wellbore radius, m.

At the external boundary for a finite formation:

ψ
∣∣
r=re = ψi (constant pressure) , (65)

∂ψ

∂r

∣∣
r=re = 0(closed) , (66)

wherere is the external boundary radius, m.

(2) Solution of the nonlinear mathematical model

Because well production pressure is largely depleted near the
wellbore, we use logarithmic-uniform radial meshes in space
to discretize the equation and obtain relatively dense grids
near the wellbore. A new space variable is taken by

R = ln(r) . (67)

The mathematical model can be converted to

∂2ψ

∂R2
+
∂ψ

∂R
= e2R ϕµCt

3.6k

∂ψ

∂t
, (68)

kh

(
Z

2p

1

eR

∂ψ

∂R

)∣∣
R=ln(rwa) − 0.04421Cs

µZ

2p

dψw

∂t

= 1.842× 10−3qg , (69)
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ψ
∣∣
R=ln(re) = ψi (constant pressure) (70)

∂ψ

∂R

∣∣
R=ln(re) = 0(closed) , (71)

ψ |t=0 = ψi,p |t=0 = pi,µ |t=0 = µi,Ct |t=0

= Cti,Z |t=0 = Zi . (72)

The central difference method is employed to solve the
model:

ψn+1
j−1 − 2ψn+1

j +ψn+1
j+1

(1R)2
+
ψn+1
j+1 −ψn+1

j−1

21R

= e2(j1R)
ϕ (µCt)

n
j

3.6k

ψn+1
j −ψnj

1t
, (73)

kh

(
Z

2p

)n
w

1

eln(rwa)

ψn+1
1 − (ψw)

n+1

1R
− 0.04421Cs

(
µZ

2p

)n
w

(ψw)
n+1

− (ψw)
n

1t
= 1.842× 10−3qg , (74)

ψn+1
J = ψi (constant pressure) , (75)

ψn+1
J −ψn+1

J−1

1R
= 0(closed) , (76)

ψ0
j = ψi,p

0
j = pi,µ

0
j = µi, (Ct)

0
j = Cti,Z

0
j = Zi , (77)

wheren is the previous time level; (n+1) is the current time
level; 0 is the initial time;j is the grid node;J is the number
of grid node at external boundary;1t is the time step size;
1R is the grid step size.

Note that Eqs. (68) and (69) are nonlinear equations be-
causeµ, Z, Ct are stealth functions of pressure and pseudo-
pressure, therefore, in order to solve the model, we used the
previous time level(µCt)

n
j in Eq. (73), and( Z2p )

n
w and(µZ2p )

n
w

in Eq. (74) to approximate the current time level.

4 Analysis of nonlinear flow characteristics

4.1 Simulating pressure transients of liquid flow

4.1.1 Type curves of pressure transients

Type curves reflect properties of underground formations.
Type curves graphically show the process and characteristics
of fluid flow in reservoirs.

(1) Type curves of the linear flow model

The standard log-log type curves of the linear flow model
(see Fig. 1) are well known. An entire flow process can be
discerned from the type curves:

i. Regime I, pure wellbore storage regime, slope of pres-
sure and the pressure derivative both equal one.

ii. Regime II, wellbore storage and skin effect regime,
shape of the derivative curve is a “hump”.

iii. Regime III, radial flow regime, slope of the pressure
derivative curve equals zero, and all the pressure deriva-
tive curves converge to the “0.5 line”, indicating the log-
arithmic value of the pressure derivative is 0.5.

iv. Regime IV, external boundary response regime. For a
constant pressure boundary, where the pressure deriva-
tive curve decreases, transient flow ultimately becomes
steady state. For closed boundary, as the pressure
derivative curve increases, transient flow ultimately be-
comes pseudo-steady state, where the type curves con-
verge to a straight line with unit slope.

Figure 1 shows type curve characteristics as controlled by
different values of parameter groupCDe

2S . A largerCDe
2S

leads to a higher location of the dimensionless pressure
curve.

(2) Type curves of nonlinear flow model

Figures 2–5 show the typical nonlinear flow characteris-
tics and flow processes of vertical well production in a ho-
mogenous formation. Figure 2 contains the type curves of
a nonlinear flow model with an infinite boundary. The type
curves are obviously controlled by the dimensionless coef-
ficient of nonlinear termβ. Pressure transients were simu-
lated by settingβ = 0, 0.01, 0.05 and 0.1. A largerβ leads to
smaller dimensionless pressure curves and associated deriva-
tive curves. The “β = 0” curves are associated with the linear
flow model. Three main flow regimes can be easily discerned
from the type curves:

i. Regime I, pure wellbore storage regime, there are no
differences in type curves between the two flow models
because liquid in formation does not start to flow and the
influence of the nonlinear quadratic pressure gradient
term is only produced for flow in formation. Wellbore
pressure transients are not affected by the nonlinearity
of oil flow in this regime.

ii. Regime II, wellbore storage and skin effect regime,
there are obvious differences in type curves between
the two flow models. The nonlinearity of liquid flow
positively influences the pressure transients. A largerβ

means a stronger nonlinear effect of liquid flow on the
type curves.
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flow processes. The type curve characteristics are controlled by different values of the dimensionless coefficient 681 

of the nonlinear term β. Pressure transients were simulated by setting β = 0, 0.01, 0.05 and 0.1. Pressure curves 682 

and their derivative curves were positively affected by β. Derivative curves did not converge to the ―0.5‖ line in 683 

the radial flow regime. The ―β=0‖ curves were linear flow model curves. 684 

 685 

Fig. 1. Type curves for linear flow models used for comparison
with those from nonlinear flow models. Type curve characteristics
controlled by parameter groupCDe

2S and external boundary con-
ditions are shown. Four main flow regimes were recognised: pure
wellbore storage regime (I), wellbore storage and skin effect regime
(II), radial flow regime (III), and external boundary response regime
(IV). Derivative curves converged to the “0.5” line in the radial
flow regime for infinite formation, decreased for constant pressure
boundary and increased for closed boundary. Pressure curves and
their derivative curves ultimately converged to a straight line with a
slope of one.
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 685 

Fig. 2. Type curves for the nonlinear well-test model with an infi-
nite boundary used in the analysis of nonlinear flow processes. The
type curve characteristics are controlled by different values of the
dimensionless coefficient of the nonlinear termβ. Pressure tran-
sients were simulated by settingβ = 0, 0.01, 0.05, and 0.1. Pres-
sure curves and their derivative curves were positively affected by
β. Derivative curves did not converge to the “0.5” line in the radial
flow regime. The “β = 0” curves were linear flow model curves.

iii. Regime III, radial flow regime, different type curves are
associated with the two flow models. Pressure derivative
curves of the nonlinear flow model do not conform to
the “0.5 line” law. The curves are located along the “0.5
line” and are inclined instead of horizontal (see Figs. 2–
5). As time elapses, the pressure derivative curves grad-
ually deviate from the “0.5 line”.
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Fig. 3.Type curves for the nonlinear well-test model with a constant
pressure boundary used for analysis of nonlinear flow processes.
The type curve characteristics are controlled by different values of
β. Pressure transients were simulated by settingβ = 0, 0.02, 0.1
and 0.2. Derivative curves decreased and ultimately converged to a
point.

Figure 3 contains the nonlinear flow model type curves
with constant pressure boundaries. Pressure transients were
simulated by settingβ = 0, 0.02, 0.1, and 0.2. Nonlinear flow
characteristics in regimes I–III are similar to the nonlinear
flow model type curves with an infinite boundary. The type
curves in regime IV show that the pressure derivative curves
decrease and ultimately converge at a point.

Figure 4 contains the nonlinear flow model type curves
with closed boundaries. Pressure transients were simulated
by settingβ = 0, 0.02, 0.1, and 0.2. Nonlinear flow char-
acteristics in Regimes I–III are similar to infinite boundary
type curves. The type curves in Regime IV show that the
pressure curves and their derivative curves increase and ul-
timately converge to a straight line whose slope is smaller
than one, instead of one, which is different from the linear
flow model.

Figure 5 shows the type curve characteristics that are con-
trolled by values associated with the parameter groupCDe

2S .
Pressure transients were simulated by settingCDe

2S
= 105,

103 and 10. A largerCDe
2S leads to larger dimensionless

pressure curves, which is similar to the linear flow model.
Dimensionless pressure curve characteristics are completely
different from those of the linear flow model. Derivative
curves cross at a point (see point A on the caption of Fig. 5)
before the radial flow regime. A largerCDe

2S leads to larger
derivative curves in Regime II and smaller derivative curves
in Regime III.

4.1.2 Quantitative analysis of nonlinear influence

Pressure curves and the derivative curves of nonlinear flow
models deviate gradually from those of linear flow mo-
dels with time. “DV” and “RDV” show the quantitative
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 697 

Fig. 4. Type curves of nonlinear well-test model with a closed
boundary used for the analysis of nonlinear flow processes. The fig-
ure shows the type curve characteristics controlled by different val-
ues ofβ. Pressure transients were simulated by settingβ = 0, 0.02,
0.1 and 0.2. Pressure curves and the associated derivative curves
increase and ultimately converged to a straight line whose slope is
smaller than one.

differences between type curves. They are defined as

DV = |value of linear model− value of nonlinear model| (78)

RDV =
DV

value of linear model
· 100%, (79)

where DV is the differential value between linear and nonlin-
ear models and RDV is the relative differential value between
linear and nonlinear models.

Tables 1 and 2 show the quantitative differences of non-
linear influence on type curves for “β = 0.01” and “β =

0.1”, respectively. Dimensionless pressure values and their
derivative values in Tables 1 and 2 were calculated by
settingCDe

2S as 103, the corresponding type curves are
shown in Fig. 3. The tables show that dimensionless pres-
sure and its derivative differ between linear and nonlin-
ear models. For “β = 0.01” and “tD/CD = 102”, DV and
RDV of pressure are 0.1711 and 2.81 %, respectively; when
“ tD/CD = 105”, DV and RDV of pressure are 0.4311 and
4.48 %, respectively; when “tD/CD = 102”, DV and RDV
of pressure derivative are 0.0348 and 6.17 %, respectively;
when “tD/CD = 105”, DV and RDV of pressure deriva-
tive are 0.0439 and 8.78 %, respectively. For “β = 0.1” and
“ tD/CD = 102”, DV and RDV of pressure are 1.3030 and
21.38 %, respectively; when “tD/CD = 105”, DV and RDV
of pressure are 2.8667 and 29.82 %, respectively; when
“ tD/CD = 102”, DV and RDV of pressure derivative are
0.2212 and 39.24 %, respectively; when “tD/CD = 105”, DV
and RDV of pressure derivative are 0.2457 and 49.14 %, re-
spectively.
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Fig. 5. Type curves of the nonlinear well-test model with an infi-
nite boundary used for analysis of nonlinear flow processes. The
type curve characteristics are controlled by different values of the
parameter groupCDe

2S . Pressure transients were simulated by set-
tingCDe

2S
= 105, 103, and 10. Derivative curves crossed at a point

(see point A on the caption) before the radial flow regime.

DV and RDV increase over time (Tables 1 and 2). RDV
of the pressure derivative is greater than that of pressure at a
fixed time, such as when “tD/CD = 103” for “ β = 0.01” (Ta-
ble 1). The RDV of the pressure derivative is 6.91 %, which is
greater than that of pressure, 3.43 %. It can be observed from
the tables that DV and RDV increase in parallel withβ, such
as when “tD/CD = 104”, RDV of pressure for “β = 0.01” is
3.96 % and RDV of pressure for “β = 0.1” is 27.39 %.

According to the equation, β = (1.842×

10−3qBµCρ)/(kh), and probable values ofβ (Table 3), it
is demonstrated thatβ is proportional to liquid viscosity,µ,
and inversely proportional to formation permeability,k, and
formation thickness,h. Formations with low permeability,
heavy oil or thin thickness have a largerβ, causing the
influence of nonlinearity to be more intense for these
formations.

In general, flow of fluid in porous media is a nonlinear
process and the nonlinear quadratic pressure gradient term
should be retained in diffusion equations.

4.1.3 Comparision to Chakrabarty’s model

Homogenous reservoir models are among recent pressure-
transient models containing the quadratic pressure gradient
term. However, these models do not study pressure-transient
curves of well-test analysis, such as Marshall (2009), Gia-
chetti and Maroscia (2008), Liang et al. (2001); while oth-
ers do not model homogenous reservoirs, such as Tong
and Wang (2005), Bai et al. (1994). The solutions of these
models cannot be compared to the model discussed here.
Chakrabarty et al. (1993b) studied a nonlinear pressure-
transient model which does not consider skin factor and plot-
ted a group of log-log pressure-transient curves based ontD.
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Table 1.Theoretical offset of type curves caused by the nonlinear term (β = 0.01).

tD/CD pwD DV RDV (%) p′
wD · tD/CD DV RDV (%)

linear nonlinear linear nonlinear

102 6.0943 5.9232 0.1711 2.81 0.5638 0.5290 0.0348 6.17
103 7.3048 7.0544 0.2504 3.43 0.5078 0.4727 0.0351 6.91
104 8.4627 8.1271 0.3355 3.96 0.5005 0.4614 0.0392 7.83
105 9.6147 9.1836 0.4311 4.48 0.5001 0.4562 0.0439 8.78

Explanations:β is the dimensionless coefficient of the nonlinear term;tD is dimensionless time;CD is dimensionless wellbore storage coefficient;
pwD is dimensionless pressure;p′

wD is dimensionless pressure derivative; DV is differential value; RDV is relative differential value. The

quantitative analysis of nonlinear influence was calculated by settingCDe
2S

= 103 andβ = 0.01. Corresponding type curves are shown in Fig. 2.

Table 2.Theoretical offset of type curves caused by the nonlinear term (β = 0.1).

tD/CD pwD DV RDV (%) p′
wD · tD/CD DV RDV (%)

linear nonlinear linear nonlinear

102 6.0943 4.7913 1.3030 21.38 0.5638 0.3425 0.2212 39.24
103 7.3048 5.5001 1.8047 24.71 0.5078 0.2902 0.2176 42.85
104 8.4627 6.1444 2.3183 27.39 0.5005 0.2701 0.2304 46.04
105 9.6147 6.7480 2.8667 29.82 0.5001 0.2543 0.2457 49.14

Explanations:β is the dimensionless coefficient of the nonlinear term;tD is dimensionless time;CD is dimensionless wellbore storage coefficient;
pwD is dimensionless pressure;p′

wD is dimensionless pressure derivative; DV is differential value; RDV is relative differential value. The

quantitative analysis of nonlinear influence was calculated by settingCDe
2S

= 103 andβ = 0.1. Type curves are shown in Fig. 2.

Table 3.Probable values for the dimensionless coefficient of the nonlinear term.

k µ β k µ β

(×10−3 µm2) (mPas) (×10−3 µm2) (mPas)

100 25 0.00115 100 100 0.00460
10 25 0.01150 10 100 0.04600
1 25 0.11500 1 100 0.46000

Explanations:k is formation permeability;µ is liquid viscosity;β is dimensionless coefficient of the
nonlinear term;β was calculated according to its definition under a set of fixed parameters: set liquid rate
q = 25 m3 d−1; liquid volume factorB = 1.004; formation thicknessh= 10 mand liquid compressibility
Cρ = 0.001 MPa−1.

The model of this article considered skin factor and regu-
lated skin factor (S) and wellbore storage coefficient (CD) to
a parameter group (CDe

2S). S would need to be set as zero
to make an effective comparison with Chakrabarty’s model.
In addition, the log-log pressure-transient curves were plot-
ted based on (tD/CD), therefore the abscissa would need to
be converted totD. Please note that the type curves based
on (tD/CD) will cross over the origin of coordinates (10−2,
10−2) and the type curves based ontD do not. Figures 8 and 9
of Chakrabarty et al. (1993b) are log-log pressure curves
and log-log pressure derivative curves, respectively. In order
to have a convenient comparison, the same parameter val-
ues and the same range of coordinate scales as those shown
Figs. 8 and 9 were used. Equation (6a) of Chakrabarty et al.
(1993b) defined the dimensionless quadratic gradient coeffi-

cient as

α = −
qµc

2πkh
, (80)

whereα is the dimensionless quadratic gradient coefficient;
q is rate at wellbore, cm3s−1; µ is viscosity, mPas;c is fluid
compressibility, atm−1; k is permeability, D;h is formation
thickness, cm.

Comparing the definition ofα in Chakrabarty et al.
(1993b) with the definition ofβ in this article, they used
the rate at wellbore and we used the rate at wellhead, and
β is the opposite number ofα. Figures 6 and 7 show the
comparisons of pressure curve and pressure derivative curve,
respectively. The solutions of our model are completely the
same as those of the model in Chakrabarty et al. (1993b).
In conclusion, our model can be reduced to the model of
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Fig. 6. Pressure curve comparisons with Chakrabarty et al. (1993b)
for homogenous infinite formation. Full lines are pressure curves
from this article and dotted lines are pressure curves associated with
Chakrabarty et al. (1993b).β is the opposite number ofα. For con-
venience, the same parameter values are set. The solutions of this
article are the same as those of Chakrabarty et al. (1993b).

Chakrabarty et al. (1993b) by setting skin factor (S) as zero.
However, our research is different from that of Chakrabarty
et al. (1993b). Significant improvements are (1) our model
considers well skin factor (S) using the effective well ra-
dius method (Agarwal et al., 1970; Chaudhry, 2004), while
Chakrabarty’s model did not, therefore our model is more
realistic; (2) we used modern standard type curves (Corbett
et al., 2012) based on (tD/CD) to regulate pressure and its
derivative curves for different external boundaries making
it convenient to use these curves to observe nonlinear tran-
sient flow behaviour. The analysis curves of Chakrabarty et
al. (1993b) were based ontD and did not use modern stan-
dard type curves; (3) different flow regimes were recognised
from the researched type curves and nonlinear flow charac-
teristics in every flow regime were analyzed. Chakrabarty et
al. (1993b) did not follow this procedure; (4) we thoroughly
analyzed parameter sensitivities to type curves, including the
nonlinear coefficient (β) and the parameter group (CDe

2S);
Chakrabarty et al. (1993b) did not; (5) we used “DV” and
“RDV”, clearly showing the difference in quantitative data
between nonlinear and linear solutions; Chakrabarty et al.
(1993b) did not; and (6) we researched real world applica-
tions by matching the theoretical nonlinear model against
field data, but Chakrabarty et al. (1993b) did not. The above
analysis methods used to research nonlinear flow issues of
liquid in an underground formation are different from previ-
ous publications, such as Cao et al. (2004), Chakrabarty et al.
(1993b), Marshall (2009).
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Fig.8  Relationship curves of gas viscosity (μ), gas compressibility (Cg), compressibility factor (Z) and 714 

pseudo-pressure (ψ) with pressure (p) for the example well. Parameters in the (3~25) MPa pressure range were 715 

calculated using gas compositions found in the commercial software, Saphir. In order to conveniently calculate 716 

these parameters in numerical simulations, relationship equations were regressed with pressure using polynomial 717 

or power functions in Microsoft Excel. 718 
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Fig. 7. Pressure derivative curve comparisons with Chakrabarty et
al. (1993b) for homogenous infinite formation. The solutions of this
article are the same as those of Chakrabarty et al. (1993b).

4.2 Simulating gas flow pressure transients

4.2.1 Data preparation

PVT parameters of gas can be calculated from gas compo-
sition (Hagoort, 1988). Using an example gas well of sand-
stone formation, basic data of formation and gas composition
are shown in Table 4 (formation at mid-depth is 1380 m; for-
mation thickness is 9.4 m; formation porosity is 0.08; forma-
tion permeability is 0.014 µm2; compressibility of formation
rock is 0.00038 MPa−1; the well radius is 0.062 m; forma-
tion temperature is 338.5 K; formation pressure is 20.5 MPa;
and mole composition of methane, ethane, propane and ni-
trogen are 99.711 %, 0.092 %, 0.03 % and 0.167 %, respec-
tively). Formation parameter data are from well logging in-
terpretations and mole composition data are from labora-
tory tests. Gas property parameters are a function of pres-
sure and temperature and were calculated using mole com-
position data (such as gas compressibility, viscosity, com-
pressibility factor and pseudo-pressure) in the commercial
software, Saphir. Figure 8 shows the relationship curves be-
tween gas property parameters and pressure. The gas com-
pressibility factor decreases and then increases with an in-
crease in pressure (Fig. 8a). Both gas viscosity and pseudo-
pressure increase with an increase in pressure (Fig. 8b and c).
Gas compressibility decreases with an increase in pressure
(Fig. 8d). Compressibility is large at low pressures, espe-
cially in critical isotherm conditions (Marshall, 2009). Crit-
ical pressures calculated using Saphir are 4.62 MPa with
gas compressibility of the example well = 0.024 MPa−1. Gas
flow in formation is a nonlinear process as shown by changes
in property parameters with pressure. For convenience, the
following formulations were regressed using polynomial or

www.nonlin-processes-geophys.net/20/311/2013/ Nonlin. Processes Geophys., 20, 311–327, 2013



322 J. C. Guo and R. S. Nie: Nonlinear flow model for well production

Table 4.Basic data from the simulated well.

Hm h ϕ k Cf rm T p mole composition
(m) (m) (µm2) (MPa−1) (m) (K) (MPa) (%)

N2 CO2 C1 C2 C3

1380 9.4 0.08 0.014 0.00038 0.062 338.5 20.5 0.167 – 99.711 0.092 0.030

Explanations:Hm is formation mid-depth;h is formation thickness;ϕ is formation porosity;k is formation permeability;Cf is compressibility of formation
rock; rw is well radius;T is formation temperature;p is formation pressure;N2 is nitrogen;CO2 is carbon dioxide;C1 is methane;C2 is ethane;C3 is
propane.
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Fig. 8. Relationship curves of gas viscosity (µ), gas compressibility (Cg), compressibility factor (Z) and pseudo-pressure (ψ) with pressure
(p) for the example well. Parameters in the (3∼ 25) MPa pressure range were calculated using gas compositions found in the commercial
software, Saphir. In order to conveniently calculate these parameters in numerical simulations, relationship equations were regressed with
pressure using polynomial or power functions in Microsoft Excel.

power functions in Microsoft Excel:

µ= 2× 10−6p2
+ 0.0003p+ 0.0117, (81)

Cg = 0.1143p−1.039, (82)

Z = −2× 10−6p3
+ 4× 10−4p2

− 0.0094p+ 0.9929, (83)

ψ = 52.117p2
+ 487.62p− 1560.7. (84)

In numerical simulations, each value of a property parameter
in the current time level was approximated using a value as-
sociated with a previous time level. Each value of a property
parameter in the previous time level can be calculated using
Eqs. (81)–(83). Pressure transients can be simulated simulta-

neously according to the relationship formulation of pseudo-
pressure with pressure (Eq. 84).

In order to compare gas and oil flow, numerical simula-
tions must be done under the same formation and well pro-
duction conditions. Wellhead gas rate of the example well is
4.3×104 m3d−1, and the bottom hole gas rate is equal to the
product of the gas volume factorBg (0.006) with a wellhead
rate of 259 m3d−1. If one was to simulate oil flow in such a
sandstone formation with 9.4 m thickness and 0.08 porosity,
the oil rate at the bottom hole would not reach 259 m3d−1.
Therefore, we simulated pressure transients by setting a rela-
tively small bottom hole rate (20 m3d−1) for both gas and oil
production. With similar formation and well production con-
ditions, property parameters of oil must be prepared before
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numerical simulations. We set oil viscosity and compressibi-
lity as 2 mPas and 0.0034 MPa−1, respectively and ignored
changes in oil viscosity and compressibility with depletion
of pressure. In addition, the wellbore storage coefficient and
skin factor were set as 0.001 m3MPa−1 and 0.5, respectively,
with a 3000 m closed external boundary for the formation.
Substituting the above data into Eqs. (57)–(61) for oil wells
and Eqs. (73)–(77) for gas wells, wellbore pressure transients
were calculated under the above conditions.

4.2.2 Numerical simulation results

Figure 9 shows the numerical simulation results for both
gas and oil well production. The horizontal coordinate rep-
resents production time (t) and the vertical coordinate repre-
sents production pressure drop (1p), or production pseudo-
pressure drop (1ψ). Simulated production time is 60 h. Fig-
ure 9 shows (1) the location of pseudo-pressure and its
derivative curves (curve1©) are at their highest because the
value of pseudo-pressure is larger than that of pressure (see
Table 5); and (2) the location of pressure and its derivative
curves for oil well production (curve2©) is higher than that
of gas well production because oil wells need a larger pres-
sure drop for the same rate of production. The model assumes
well production is at a constant volume rate. The very high
dilatability of gas with the depletion of pressure makes the
volume supply of gas to well rate easier than that of oil; there-
fore, the pressure drop of gas well production is lower than
that of oil well production. Figure 9 also shows the difference
between external boundary response time for oil and gas well
production. A larger pressure drop for oil well production
results in a faster propagation of pressure waves, therefore
propagating time for a pressure wave to reach the closed ex-
ternal boundary for oil well production (teo) is shorter than
that of gas well production (teg). According to the simulated
results, external boundary response time of oil and gas flow
is 0.6 h and 4.3 h, respectively. As shown in Fig. 9, after a
pressure wave reaches the closed external boundary, tran-
sient flow will reach a pseudo-steady state flow, in which the
derivative curves converge to a straight line (Chaudhry, 2004;
Nie et al., 2011a).

Table 5 lists partial data associated with the numerical
simulation results and shows quantitative differences in nu-
merical values among wellbore pseudo-pressure, wellbore
pseudo-pressure drop, wellbore pressure and wellbore drop
for both gas and oil well production under the same condi-
tions. Differences in quantitative analyses can be described
from the table: (1) pseudo-pressure values are near 1500
times that of pressure values. Therefore, comparisons be-
tween pseudo-pressure and pressure are not significant and
comparisons of real wellbore pressure between gas and oil
well production need to be calculated; (2) at the beginning of
production, pressure drop in oil well production is about 19
times that of gas well production because a rate of 20 m3d−1

is small for gas well production and high for oil well pro-
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Fig. 9. Numerical solutions comparisons for oil and gas flows. For
convenience, the same formation and well production conditions
were used in the numerical simulations. Pseudo-pressure (see curve
1©) and pressure transients (see curves3©) for gas well production,
and pressure transients for oil well production (see curves2©) were
simulated. Pressure depletion of the oil well is greater than that of a
gas well under the same conditions. For oil well production, prop-
agating time of the pressure wave to the closed external boundary
(teo) is approximately 0.6 h. For gas well production, propagating
time to the boundary (teg) is about 4.3 h.

duction in a formation with 10 m thickness; (3) at a time of
“ t = 0.6 h” when the pressure wave of oil well production
reaches the external boundary, the pressure drop in the oil
well is 7.21 MPa, while the pressure drop in the gas well is
0.346 MPa; (4) at the time of “t = 4.3 h” when the pressure
wave of gas well production reaches the external boundary,
the pressure drop of the gas well is 0.352 MPa, while the
pressure drop in the oil well is 9.57 MPa; and (5) when the
wellbore pressure of oil well production decreases to atmo-
spheric pressure (0.1 MPa), which is an absolute open flow
status, the production time is 21.5 h which is the limit time of
oil well at 20 m3d−1 rate production. If production time ex-
ceeds limit time, the formation could not support an oil rate
of 20 m3d−1 and the rate must decline. However, at the limit
time of oil well production the pressure drop of gas well pro-
duction is only 0.358 MPa, which means the formation can
easily support a gas rate of 20 m3d−1 for an extended period
of time.

In conclusion, numerical simulations show that there are
obvious differences in wellbore pressure transients for oil
and gas flow under the same formation and well conditions
owing to the difference of fluid properties. Compared with
gas wells, oil wells demand a relatively larger wellbore pres-
sure drop and a relatively faster depletion.
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Table 5.Numerical comparisons between oil and gas well production.

t gas well production oil well production
(h)

ψw 1ψ pw 1p pw 1p

MPa2 (mPas)−1 MPa2 (mPas)−1 (MPa) (MPa) (MPa) (MPa)

0 30630.13 0 20.50 0 20.50 0
0.1 30519.08 111.05 20.157 0.343 13.87 6.63
0.6 30509.25 120.88 20.154 0.346 13.29 7.21
1 30506.78 123.35 20.152 0.348 12.99 7.51

4.3 30498.56 131.57 20.148 0.352 10.93 9.57
10 30493.71 136.42 20.146 0.354 7.64 12.86
15 30490.52 139.61 20.145 0.355 4.58 15.92

21.5 30485.67 144.46 20.142 0.358 0.1 20.50

Explanations:t is production time;ψw is gas pseudo-pressure of wellbore,MPa2 (mPas)−1; 1ψ is gas pseudo-pressure
drop of wellbore,MPa2 (mPas)−1; pw is wellbore pressure;1p is wellbore pressure drop.

Table 6.Formation and well parameters of the example well.

Ht ∼Hb h 8 Cρ Ct rw µ B q tp
(m) (m) (MPa−1) (MPa−1) (m) (mPas) (m3d−1) (h)

1168∼ 1171 3 0.21 0.0034 0.0038 0.062 20.08 1.089 24.5 3465

Explanations:h is formation thickness;8 is porosity;Cρ is oil compressibility;Ct is total compressibility of rock and oil;rw is well
radius;µ is oil viscosity;q is average rate before shutting-in;tp is production time before shutting-down;Ht is depth of the formation
top;Hb is depth of the formation bottom.
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Fig. 10. Build-up pressure curve of well testing at wellbore of
the example well. The relationship between build-up pressure and
shutting-down time is shown. Wellbore pressure when shut down
and at testing termination were 13.79 MPa and 15.23 MPa, respec-
tively. Shutting-down time of well testing was 326 h.

5 Field application

This study used a pressure buildup testing well in a sandstone
reservoir with an edge water drive. The curve of wellbore
shutting-down pressure,pws, with shutting-down time,1t , is
shown in Fig. 10. Formation and well parameters are shown
in Table 6.
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Fig. 11. Matching curves with units of well-test interpretation for
the example well. Log-log curve characteristics of well-testing data
and the matching effects of theoretical curves against actual testing
data between the linear model and the nonlinear model are shown.
Both models performed well. The matching effect of the derivative
curves associated with the nonlinear model was more desirable, es-
pecially in Regimes II and IV.

Log-log curves of well-testing data are shown in Fig. 11.
Four main flow regimes are observed: (i) Regime I, pure
wellbore storage regime; (ii) Regime II, wellbore storage and
skin effect regime; (iii) Regime III, radial flow regime; and
(iv) Regime IV, external boundary response regime caused
by edge water.
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The researched nonlinear flow model from this article
was used to make a well-test interpretation. Matching curves
from a well-testing interpretation using the nonlinear model
with a constant pressure boundary are shown in Fig. 11.
The conventional linear flow model with a constant pres-
sure boundary was used in a well-test interpretation. Match-
ing curves are shown in Fig. 11. Matching effects between
the two interpretations are desirable. Differences between
the theoretical curves and real testing data are noticeable
(Fig. 11). Using the matching derivative curves, matching
effects for the nonlinear model are more desirable than for
the linear model, especially in periods II and IV. Match-
ing curve differences between the two models were incon-
spicuous; therefore, the dimensionless matching curves of
well-test interpretation were used to show the differences be-
tween the matching effects associated with the two models
(Fig. 12).

The main interpretation parameters are shown in Table 7.
The formation permeability (k) of well-test interpretation
using the nonlinear model is 0.03925 µm2 and the dimen-
sionless coefficient of nonlinear term (β) of well-test inter-
pretation using the nonlinear model is 0.0287. We substi-
tuted the formation permeability value (0.03925 µm2) into
the equationβ = (1.842×10−3qBµCρ)/(kh) and calculated
β. The calculated value ofβ using interpretation permeabil-
ity = 0.0285, which is slightly smaller than the interpretation
β value (0.0287). The differential value and the relative dif-
ferential value are 0.0003 and 0.70 %, respectively. There-
fore, interpretation results using a nonlinear flow model are
credible and there is no need to re-match field testing data by
changing theoretical parameters.

Table 7 shows the obvious differences between well-test
interpretation parameter values for the two models. The dif-
ferential value of the wellbore storage coefficient is zero be-
cause wellbore pressure of the example well is not affected
by nonlinearity of oil flow in the wellbore storage regime (Ta-
ble 7). The values of parametersS, k, andre using nonlinear
model interpretation are smaller than those using nonlinear
model interpretations. The relative differential value ofS, k
andre are 29.63 %, 18.53 %, and 10.38 %, respectively.

Interpretation using the conventional linear flow model
would enlarge the parameter value. The nonlinear flow model
is recommended because it is a useful tool for evaluation
of formation properties and prediction of engineering con-
ditions.

6 Conclusions

Nonlinear diffusion equations of liquid and gas in porous me-
dia were deduced, nonlinear flow models were established
and solved and nonlinear flow behaviour was simulated and
analyzed. The findings are as follows:
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Fig. 12.Dimensionless matching curves of well-test interpretation
for the example well. The dimensionless matching curves were used
to show differences between well-test analyses using nonlinear and
linear models. Obvious differences in the theoretical type curves
were found.

Table 7.Main interpretation parameters of the example well.

model Cs S k re β

(m3 MPa−1) (10−3 µm2) (m)

nonlinear 0.0062 0.57 39.25 561 0.0287
linear 0.0062 0.81 48.18 626 –
DV 0 0.24 8.93 65 –

RDV (%) 0 29.6 3 18.53 10.38 –

Explanations:Cs is wellbore storage coefficient;S is skin factor;k is formation
permeability;re is distance of constant pressure boundary from wellbore;β is
dimensionless coefficient of nonlinear term; DV is differential value; RDV is
relative differential value.

1. Effects of nonlinearity upon pressure transients are ob-
vious and nonlinear models more accurately portrait the
flow processes of fluid in porous media.

2. Locations of pressure and nonlinear model derivative
curves for liquid flow are lower than those derived from
linear models.

3. Differences between nonlinear and linear model pres-
sure transients increase with time and the nonlinear co-
efficient.

4. Influences of nonlinearity are greater for formations
with low permeability, heavy oil or thin thickness.

5. Nonlinear transient flow behaviour of gas is different
from that of oil because of dissimilar fluid properties.
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Appendix A

The material balance equation for liquid flow in porous me-
dia reservoirs can be expressed as

∂

∂x
(ρvx)+

∂

∂y

(
ρvy

)
+
∂

∂z
(ρvz)= −

∂

∂t
(ρϕ) , (A1)

whereρ is density, gcm−3; ϕ is rock porosity, fraction;t is
time, s;x, y, andz are Cartesian coordinates;vx is flow ve-
locity in the x direction, cms−1; vy is flow velocity in the
y direction, cms−1; vz is flow velocity in thez direction,
cms−1.

Considering isothermal equations and Darcy’s flow, the
motion equation of liquid can be expressed as

v = −0.1
kj

µ
∇p, (j = x,y,z) , (A2)

wherep is pressure, MPa;µ is viscosity, mPas;v is flow
velocity, cms−1; kx is permeability in thex direction, µm2;
ky is permeability in they direction, µm2; kz is permeability
in thez direction, µm2.

Substitute Eq. (A2) into Eq. (A1):

∂
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)
= 10

∂

∂t
(ρϕ) , (A3)

∂
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ρ
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µ
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∂x

)
=
ρkx

µ

∂2p

∂x2
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ρ

µ

∂p

∂x

∂kx

∂x
+
kx

µ

∂p

∂x

∂ρ

∂x
. (A4)

Change the form of Eq. (3):

p =
1

Cρ
lnρ−

1

Cρ
lnρ0 +p0 , (A5)

∂p

∂x
=

1

ρCρ

∂ρ

∂x
, (A6)

∂p

∂t
=

1

ρCρ

∂ρ

∂t
, (A7)

whereCρ is liquid compressibility, MPa−1; ρ0, ϕ0, p0 are
reference values, which are usually used under standard con-
ditions.

Substitute Eq. (A6) into Eq. (A4):
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. (A8)

By the same method, the following two equations can be
deduced:
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Change the form of Eq. (4):

p =
1

Cf
lnϕ−

1

Cf
lnϕ0 +p0 , (A11)

∂p

∂t
=

1

ϕCf

∂ϕ

∂t
, (A12)

whereCf is rock compressibility, MPa−1.
Substitute Eqs. (A12) and (A7) into Eq. (A3), the right of

Eq. (A3) is changed as

∂

∂t
(ρϕ)=ϕ

∂ρ

∂t
+ ρ

∂ϕ

∂t
=ρϕCρ

∂p

∂t
+ ρϕCf

∂p

∂t
= ρϕCt

∂p

∂t
, (A13)

Ct = Cρ +Cf . (A14)

whereCt is total compressibility of rock and liquid, MPa−1.
Substitute Eqs. (A8)–(A10) and Eq. (A13) into Eq. (A.3):(
kx
∂2p

∂x2
+ ky

∂2p

∂y2
+ kz

∂2p

∂z2

)
+

(
∂p

∂x

∂kx

∂x
+
∂p

∂y

∂ky

∂y
+
∂p

∂z

∂kz

∂z

)

+Cρ

[
kx

(
∂p

∂x

)2

+ ky

(
∂p

∂y

)2

+ kz

(
∂p

∂z

)2
]

= 10µϕCt
∂p

∂t
. (A15)

We assume the permeability in both the horizontal and ver-
tical planes is isotropic and constant:

kx = ky = kh , (A16)

∂kx

∂x
=
∂ky

∂y
=
∂kz

∂z
= 0, (A17)

wherekh is permeability in the horizontal plane, µm2.
Substitute Eqs. (A16) and (A17) into Eq. (A15):(
∂2p

∂x2
+
∂2p

∂y2
+
kz

kh

∂2p

∂z2

)
+Cρ

[(
∂p

∂x

)2

+

(
∂p

∂y

)2

+
kz

kh

(
∂p

∂z

)2
]

=
10µϕCt

kh

∂p

∂t
. (A18)

Equation (A19) is the governing differential equation con-
taining the quadratic gradient term in Cartesian coordinates.
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