Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 1.321 IF 1.321
  • IF 5-year<br/> value: 1.636 IF 5-year
  • SNIP value: 0.903 SNIP 0.903
  • SJR value: 0.709 SJR 0.709
  • IPP value: 1.455 IPP 1.455
  • h5-index value: 20 h5-index 20
Nonlin. Processes Geophys., 21, 101-113, 2014
© Author(s) 2014. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
10 Jan 2014
Stochastic formalism-based seafloor feature discrimination using multifractality of time-dependent acoustic backscatter
K. Haris and B. Chakraborty CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India
Abstract. Dual-frequency echo-envelope data acquired using the normal-incidence single-beam echosounder system (SBES) have been examined to study its scale invariant properties. The scaling and multifractality of the SBES echo envelopes (at 33 and 210 kHz) were validated by applying a stochastic-based multifractal analysis technique. The analyses carried out substantiate the hierarchy of multiplicative cascade dynamics in the echo envelopes, demonstrating a first-order multifractal phase transition. The resulting scale invariant parameters (α, C1, and H) establish gainful information that can facilitate distinctive delineation of the sediment provinces in the central part of the western continental shelf of India. The universal multifractal parameters among the coarse and fine sediments exhibit subtle difference in α and H, whereas the codimension parameter C1 representing the sparseness of the data varies. The C1 values are well clustered at both the acoustic frequencies, demarcating the coarse and fine sediment provinces. Statistically significant correlations are noticeable between the computed C1 values and the ground truth sediment information. The variations in the multifractal parameters and their behavior with respect to the ground truth sediment information are in good corroboration with the previously estimated sediment geoacoustic inversion results obtained at the same locations.

Citation: Haris, K. and Chakraborty, B.: Stochastic formalism-based seafloor feature discrimination using multifractality of time-dependent acoustic backscatter, Nonlin. Processes Geophys., 21, 101-113, doi:10.5194/npg-21-101-2014, 2014.
Publications Copernicus