Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 1.321 IF 1.321
  • IF 5-year<br/> value: 1.636 IF 5-year
  • SNIP value: 0.903 SNIP 0.903
  • SJR value: 0.709 SJR 0.709
  • IPP value: 1.455 IPP 1.455
  • h5-index value: 20 h5-index 20
Nonlin. Processes Geophys., 21, 919-927, 2014
© Author(s) 2014. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
01 Sep 2014
Estimating model error covariance matrix parameters in extended Kalman filtering
A. Solonen1,2, J. Hakkarainen2, A. Ilin3, M. Abbas3, and A. Bibov1 1Lappeenranta University of Technology, Lappeenranta, Finland
2Finnish Meteorological Institute, Helsinki, Finland
3Aalto University, Helsinki, Finland
Abstract. The extended Kalman filter (EKF) is a popular state estimation method for nonlinear dynamical models. The model error covariance matrix is often seen as a tuning parameter in EKF, which is often simply postulated by the user. In this paper, we study the filter likelihood technique for estimating the parameters of the model error covariance matrix. The approach is based on computing the likelihood of the covariance matrix parameters using the filtering output. We show that (a) the importance of the model error covariance matrix calibration depends on the quality of the observations, and that (b) the estimation approach yields a well-tuned EKF in terms of the accuracy of the state estimates and model predictions. For our numerical experiments, we use the two-layer quasi-geostrophic model that is often used as a benchmark model for numerical weather prediction.

Citation: Solonen, A., Hakkarainen, J., Ilin, A., Abbas, M., and Bibov, A.: Estimating model error covariance matrix parameters in extended Kalman filtering, Nonlin. Processes Geophys., 21, 919-927, doi:10.5194/npg-21-919-2014, 2014.
Publications Copernicus