Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 1.329 IF 1.329
  • IF 5-year<br/> value: 1.394 IF 5-year
    1.394
  • CiteScore<br/> value: 1.27 CiteScore
    1.27
  • SNIP value: 0.903 SNIP 0.903
  • SJR value: 0.709 SJR 0.709
  • IPP value: 1.455 IPP 1.455
  • h5-index value: 20 h5-index 20
Nonlin. Processes Geophys., 24, 23-42, 2017
https://doi.org/10.5194/npg-24-23-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
26 Jan 2017
Laboratory experimental investigation of heat transport in fractured media
Claudia Cherubini1,2, Nicola Pastore3, Concetta I. Giasi3, and Nicoletta Maria Allegretti3 1Department of Mechanical, Aerospace & Civil Engineering, Brunel University London, Uxbridge, UB8 3PH, UK
2School of Civil Engineering, The University of Queensland, Queensland, Australia
3DICATECh, Department of Civil, Environmental, Building Engineering, and Chemistry, Politecnico di Bari, Bari, Italy
Abstract. Low enthalpy geothermal energy is a renewable resource that is still underexploited nowadays in relation to its potential for development in society worldwide. Most of its applications have already been investigated, such as heating and cooling of private and public buildings, road defrosting, cooling of industrial processes, food drying systems or desalination.

Geothermal power development is a long, risky and expensive process. It basically consists of successive development stages aimed at locating the resources (exploration), confirming the power generating capacity of the reservoir (confirmation) and building the power plant and associated structures (site development). Different factors intervene in influencing the length, difficulty and materials required for these phases, thereby affecting their cost.

One of the major limitations related to the installation of low enthalpy geothermal power plants regards the initial development steps that are risky and the upfront capital costs that are huge.

Most of the total cost of geothermal power is related to the reimbursement of invested capital and associated returns.

In order to increase the optimal efficiency of installations which use groundwater as a geothermal resource, flow and heat transport dynamics in aquifers need to be well characterized. Especially in fractured rock aquifers these processes represent critical elements that are not well known. Therefore there is a tendency to oversize geothermal plants.

In the literature there are very few studies on heat transport, especially on fractured media.

This study is aimed at deepening the understanding of this topic through heat transport experiments in fractured networks and their interpretation.

Heat transfer tests have been carried out on the experimental apparatus previously employed to perform flow and tracer transport experiments, which has been modified in order to analyze heat transport dynamics in a network of fractures. In order to model the obtained thermal breakthrough curves, the Explicit Network Model (ENM) has been used, which is based on an adaptation of Tang's solution for the transport of the solutes in a semi-infinite single fracture embedded in a porous matrix.

Parameter estimation, time moment analysis, tailing character and other dimensionless parameters have permitted a better understanding of the dynamics of heat transport and the efficiency of heat exchange between the fractures and the matrix. The results have been compared with the previous experimental studies on solute transport.


Citation: Cherubini, C., Pastore, N., Giasi, C. I., and Allegretti, N. M.: Laboratory experimental investigation of heat transport in fractured media, Nonlin. Processes Geophys., 24, 23-42, https://doi.org/10.5194/npg-24-23-2017, 2017.
Publications Copernicus
Download
Short summary
Aquifers offer the possibility of exploiting geothermal energy. Especially in fractured aquifers, in order to increase the optimal efficiency of installations which use groundwater as a geothermal resource, flow and heat transport dynamics need to be well understood. This study is aimed at deepening the understanding of this topic through heat transport experiments in fractured networks and their interpretation.
Aquifers offer the possibility of exploiting geothermal energy. Especially in fractured...
Share