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Abstract

In this paper, for a prescribed normalized vertical
convective heating profile, nonlinear Kelvin wave
equations with wave-CISK heating over equatorial
region is reduced to a sixth-order nonlinear ordinary
differential equation by using the Galerkin spectral
method in the case of considering nonlinear interac-
tion between first and second baroclinic modes. Some
numerical calculations are made with the fourth-order
Rung-Kutta scheme. It is found that in a narrow range
of the heating intensity parameter b, 30-60-day os-
cillation can occur through linear coupling between
first and second baroclinic Kelvin wave-CISK modes
for zonal wave-number one when the convective
heating is confined to the lower and middle tro-
pospheres. While for zonal wavenumber two, 30-60-
day oscillation can be observed in a narrow range of
b only when the convective heating is confined to the
lower troposphere. However, in a wider range of this
heating intensity parameter, 30-60-day oscillation
can occur through nonlinear interaction between the
first and second baroclinic Kelvin wave-CISK modes
with zonal wavenumber one for three vertical con-
vective heating profiles having a maximum in the
upper, middle and lower tropospheres, and the total
streamfield of the nonlinear first and second baro-
clinic Kelvin wave-CISK modes possesses a phase
reversal between the upper- and lower-tropospheric
wind fields. While for zonal wavenumber two, no 30-
60-day oscillations can be found. Therefore, it ap-
pears that nonlinear interaction between vertical
Kelvin wave-CISK modes favors the occurence of
30-60-day oscillations, particularly, the importance
of the vertical distribution of convective heating is
reemphasized.

1. TIntroduction

Since 40-50 day oscillation in the zonal wind in the
tropical Pacific was first detected by Madden and

Julian (1971, 1972), a series of works on low fre-
quency (intraseasonal) oscillation have been made by
many investigators (Yasunari, 1979; Krishnumariti et
al., 1982; Murakami et al., 1985; Lau et al., 1985,
1987; Ghil et al., 1990). They found that 30—-50 day
oscillations in the tropics are dominated by zonal
wavenumbers one and two, especially by zonal wave-
number one, and propagate slowly eastward with the
phase speed of about 10 m/s, whose vertical structure
possesses "bareclimic" feature having the reversal
between the upper and the lower levels of tro-
posphere in the wind and pressure fields.

Chang (1974) at first attempted to explain the
slow propagation of intraseasonal oscillations using
the damping Kelvin waves in tropics. He showed that
when cumulus heating and dissipation effects are
taken into account, a slowly propagating Kelvin wave
mode arises due to a balance between heating and
dissipation. Goswami and Shukla (1984) found that
interactions between convection and a zonally sym-
metric circulation can induce intraseasonal oscilla-
tions. The numerical study of Lau and Peng (1987)
showed that intraseasonal oscillation with period of
30 to 60 days is an intrinsic mode of tropical os-
cillations maintained by the so-called mobile wave-
CISK mechanism due to convective heating. At the
same time, Takahashi (1987) pointed out that the
vertical distribution of convective heating is very
important to control the slow phase speed of
intraseasonal oscillation, and further pointed out that
a propagating unstable low frequency disturbance can
occur only when the interactions between the vertical
modes take place. Chang and Lim (1988) investigated
in detail the interactions between vertical modes of
Kelvin wave-CISK, and suggested that for convective
heating with a maximum near the midtroposphere, the
CISK modes can propagate eastward at a phase speed
between 15 and 30 m/s, which arise from the interac-
tion between two internal modes. And they pointed
out that within the framework of linear CISK theory,
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their results could not explain the persistence of the
"wavenumber-1" structure of the simulated disturb-
ance. The reason is that linear Kelvin wave-CISK
mode suffers from "short wave explosion" with its
growth rate increasing with the wavenumber. This
shows that the linear CISK theory has failed in
describing the scale-selection characteristics. After-
wards, in order to overcome this shortcoming, Lim et
al. (1990} studied nonlinear wave-CISK modes in-
duced only by nonlinear "positive-only" heating un-
der the condition of neglecting all advective nonline-
arity terms. They found that nonlinear "positive-only”
heating alone is able to produce exponentially grow-
ing "wavenumber-1" flow patterns that propagate
with change of shape. However, in all the studies
nonlinear advective effect is excluded. If the advec-
tive nonlinearity and the wave-CISK heating used by
Takahashi (1987) are considered, can this shortcom-
ing be overcome? Recently, Sui and Lau (1989) em-
phasized that convective heating in the lower tro-
posphere is important in slowing down the Kelvin
wave-CISK modes, and also showed that nonlinear
effect may play an important rele in determining the
detailed structure in phase speed and propagation of
intraseasonal oscillation in the tropics, to which no
theoretical investigation including nonlinear advec-
tive effect was presented. Thus, their study leads to
increase our belief that under the condition of con-
sidering the advective nonlinearity, nonlinear Kelvin
wave-CISK mode induced only by the wave-CISK
heating may take on a wavenumber-1 structure. Con-
sequently, it is very useful to investigate the com-
bined role of convective heating and advective non-
linearity in producing tropical 30-60 day oscillation.

This paper mainly uses the Galerkin truncated
spectral method to examine the role of Kelvin wave-
CISK and advective nonlinearity in producing in-
trascasonal oscillation, particularly, the importance
of the vertical distribution of the convective heating
is reemphasized. In this paper, in order to simplify
our problem, and to emphasize the combined role of
both convective heating and advective nonlinearity,
two modes of Kelvin wave-CISK are only considered
in the vertical direction, and the dissipation is also
excluded. In section 2, we introduce basic equations,
several normalized convective heating profiles and
the obtained spectral truncation equations. Linear and
nonlinear results of Kelvin-wave CISK modes for
different convective heating profile are given in sec-
tions 3 and 4, respectively. In section 5, we give the
vertical structures of linear kelvin wave without
wave-CISK heating and nonlinear Kelvin wave-CISK
mode. Section 6 is devoted to discussions and con-
clusions.

2. Basic equations, normalized convective heat-
ing profiles and truncated spectral equations

2.1 The basic equations
The nonlinear equations describing Kelvin waves

with wave-CISK convective heating in the equatorial
region can be written
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where # and w are horizontal and vertical components
of wind velocities, respectively;
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8, &z the disturbance potential tem-

perature, &, the mean potential temperature and g the
acceleration speed due to gravity; #7 (z) is the nor-
malized convective heating profile; & is a nondimen-
sional parameter and denotes the intensity of convec-
tive heating; N7 is the Bruni-Vaisala frequency; wiz =
zp is the vertical velocity at the top of boundary layer
(zp is the height of boundary layer top). Here, the
adopted parameterization of convective heating is the
so-called wave-CISK scheme proposed by Emanuel
(1982), and then applied by Takahashi (1987). When
the nonlinear terms in Egs. (1) and (2} are neglected,
this equation is similar in form to that used by Taka-
hashi (1987).

From the continuity equation (1), we may
introduce the streamfunction i such that it satisfies
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where y and & vanish at the vertical boundaries z = 0
and H,
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Sz ox s the Jacobian operator.

For simplicity, we introduce the nondimensional
quantities as follows
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where the asteriks denote nondimensional forms, 7
and I/ are the horizontal and vertical scales respec-
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disturbance potential temperature.

Substituting (6) and (7) into (4) and (5), the nondi-

mensionalization of the two equations and dropping

of "*" leads to
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where C,=——-C,=——— and z, is the nondimen-
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sional height of boundary laver top.
2.2 The normalized convective heating profile

As a approximate expression of normalized convec-
tive heating profile in the tropical atmosphere, we
assume 77 (z) = A, sin (7z) + A, sin (27z2), where 4, <
1 and A, < 1. Actually, the prescribed convective
heating profile has three special cases: first one is a
symmetric heating profile that A; > 0 and A, = 0. For
this case, if we take A, =1 and A, = 0, the maximum
of the convective heating # (z) is located in the mid-
troposphere. This vertical profile is similar to that
used by Hayashi (1970) and Takahashi (1987). Sec-
ond is idealized shallow convective heating profile
that 4; > 0 and A, > 0. For example, if A, = 0.7 and
A2 = 0.3 are allowed, the maximum of the convective
heating profile locates in the lower layer of tro-
posphere. This case corresponds to that discussed by
Sui and Lau (1989), who found that the convective
heating profile having a maximum in the lower tro-
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posphere is important for the slower wave-CISK
modes. But their results are based on linear theories.
Third is idealized deep convective heating profile
that A, > 0 and A, < 0. For example, if we choose
A1 = 0.7 and A; = 0.3, the maximum of this vertical
profile exists in the upper layer of troposphere. Con-
sequently, the convective heating distribution in the
tropical atmosphere can be approximately described
by the prescribed normalized convective heating pro-
file here.

2.3 The truncated spectral equations

Chang and Lim (1988) have shown that propagating
CISK modes can not exist in a linear single vertical
mode CISK model. They also found that when con-
vective heating is maximum in the midtroposphere,
eastward propagating CISK modes resembling the
observed 30-60 day oscillations can occur. These
modes result from the interaction between two
internal modes which are locked in-phase vertically.
Here, in order to study properties of nonlinear Kelvin
wave-CISK modes induced only by wave-CISK heat-
ing, as a simplest model two modes are considered in
the vertical direction. Following the truncated spec-
tral method used by Saltzman (1962) and Lorenz
(1963), we seek the solutions of (8) and (9) in the
spectral forms

w = —x,(f) sin (kx)sin(rz) -

x,(t) sin (kx)sin (27z2) (10)

& = x5(t} cos (kx) sin (7z) +
x4(r} cos (kx) sin (27z) - (11)
x5{(#) sin (2mz) — x,(¢) sin (47 z)

is the nondimensional wavenumber

where k= "
6371

of Kelvin wave-CISK mode, and #» is the zonal wave-
number. Here both x5 and x, are considered according
to the work of Saltzman (1962). They represent the
variations of the vertical potential temperature which
are induced through nonlinear interactions between
both disturbance streamfield and disturbance poten-
tial temperature as seen from the latter discussion.

Substitution of (10) and (11) into (8) and (9), after
some algebra, gives
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dx
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In Egs. (12)—(17), x; and x, can be called "first and
second baroclinic modes", respectively. If Eqs. (12)-
(17) is linearized, its analytical solutions can be ob-
tained. However, for nonlinear case the numerical
solutions of Bgs. (12)-(17) can be only obtained by
means of the fourth-order Rung-Kutta method, Some
observations (Murakami et al. 1985) indicated that
the tropical intraseasonal oscillation has a
"baroclinic" structure with an opposite phase between
the upper and lower level of troposphere, which
means that the second baroclinic mode x, is more
important than the first baroclinic mode x, in de-
scribing the vertical structure of tropical low fre-
quency oscillation. However, because the two modes
form the total streamfunction field of tropical in-
traseasonal oscillation, the first baroclinic mode is
also important,

For convenience to compare, we will also give the
computational results of the first baroclinic mode. To
carry out the numerical calculation, here we may
choose the parameters

U=10mfs, H = 10*m, 8, = 9%8 and z, = 0.103 (the

value zy is chosen to be the same as that taken by
Miyahara (1987)). In this case, we have C, = /00 and
Cs = 1.0. In addition, the chosen initial amplitudes
here are x,(0) = x,(0) = 0.6 and x;{0) = x,(0) = x5(0)
= x4(0) = 0.0, and the time step is chosen to be
At = 0.173. In the present paper, to emphasize the
role of the advective nonlinearity in producing 30-60
day low frequency oscillations, we will give linear
and nonlinear results respectively.

3. Linear Kelvin wave-CISK modes

In this section, we shall study the properties of linear
Kelvin wave-CISK modes for various convective
heating profile.

If Bgs. (12)-(17) is linearized, they reduce to

&K (18)
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— kbC 2, sin (272;) %, (20)
d
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For case without wave-CISK, the equations describ-
ing x, and x, are independent from each other, and
their periods are different. With T and 7, denoting
the periods of first and second baroclinic modes
respectively, then we can obtain 7; = 15 days and T,
= 28 days for case without convective heating. For
asymmetric convective heating profile (shallow and
deep convective heating profiles) in the vertical di-
rection we can find that both x; and x, equations are
dependent. Clearly, in this case both first and second
baroclinic Kelvin wave-CISK modes can interact
linearly. As a result, the two modes possesses the
same period. Certainly, for symmetric convective
heating profile this conclusion may be invalid.

3.1 Zonal wavenumber one

Tn this subsection, we will devide three cases to dis-
cuss our linear results. Here, table la-c gives the
periods T and T of first and second baroclinic Kel-
vin wave-CISK modes for different vertical
convective heating profiles and different value of b.

Table 1. The periods 7y and T: of linear first and second baro-
clinic Kelvin wave-CISK modes for zonal wavenumber-one for
three vertical convective heating profiles and various &, in which
the unit of the period is day: (a) symmetric convective heating
profile; (b) shallow convective heating profile; (¢) deep convec-
tive heating profile.

(a)

—
~.] 0 1 2 3 4 5
T 135 28 25 60 o0 a0
T2 28 28 28 28 28 28
(b)

b
] 1 2 3 4 5
T 15 33 53 00 o0 o0
T 28 33 53 o0 8] oo

(c)

b
. 0 1 2 3 4 5
T1 15 26 o0 oG 53] 73]
Ty 28 26 a0 a0 o0 =)

3.1.1 Symmetric convective heating profile (77 (z) =
sin (7zz))

Table 1a corresponds to the case of symmetric con-
vective heating profile. It is found from this table that



no matter how the intensity of convective heating &
is, the second baroclinic mode can only exhibit a
neatly 28 day oscillation, while for first baroclinic
mode, only when b is between 2.5 and 3.0, its domi-
nant period varies between 30 and 60 days. Actually,
the total streamfield of the two modes still oscillates
periedically with 28 days over the range of 2.5 < &
< 3.0 (its figure is omitted). Here, this oscillation can
be still called a 30-day oscillation. However, when
bz 4.0 is allowed, this first baroclinic mode will
become unstable and stationary. And its growth rate
increases with wavenumber. This fact has been noted
by Chang and Lim (1988). Certainly, when the con-
vective heating is weaker, the above result is similar
to the linear GCM result of Lau et al. (1988), who
had shown that the convective heating that has a
maximum in the middle layer of troposphere is ad-
vantageous to produce about 25-day oscillation for
zonal wavenumber-1 which is shorter than that in the
observations, and the phase speed of unstable mode
can be only lowered to that of the observations
(10 m/s, its period is 52 days) by lowering the center
of mass of heating.

3.1.2 Shallow convective heating profile (77 (z) = 0.7
sin (xz) + 0.3 sin (27z))

Table 1b shows the dependence of the periods of the
first and second baroclinic modes on the intensity b
of shallow convective heating. We notice that when
shallow convective heating profile is considered, both
first and second baroclinic modes possess the same
period, which will be in the range from 33 to 53 days
when & is chosen to be between 1.0 and 2.0. How-
evet, as b tends from 3.0 to larger value, the two
Kelvin wave-CISK modes will become unstable and
stationary.

3.1.3 Deep convective heating profile {7 (z) = 0.7 sin
(mz}—- 0.3 sin (27z))

Table lc corresponds to the case of deep convective
heating profile. Tt is seen from this table that for deep
convective heating profile a propagating Kelvin
wave-CISK mode with period of nearly 26 days can
be excited through the coupling between the first and
second baroclinic modes when & = 1.0. However,
when b 2 2.0, the two modes become unstable and
stationary.

3.2 Zonal wavenumber two

For this zonal wavenumber, our numerical calcula-
tions further indicate that for symmetric convective
heating profile, the period of the first baroclinic
mode is in the range from 30 to 60 days when 2.7 <
b < 3.1, while when » = 3.2 this mode will grow.
However, for second baroclinic mode its period i%
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nearly 15 days for any value of 4. For shallow con-
vective heating profile, when 2.1 < b < 2.4, the iden-
tical period of both first and second baroclinic modes
varies from 30 to 60 days. While when b = 2.5, the
two modes will be unstable and stationary. By com-
paring with zonal wavenumber one, we can find that
when b is only in a narrow range, 30-60-day oscilia-
tion can be found for wavenumber two Kelvin wave-
CISK modes, which indicating the wavenumber one
Kelvin wave-CISK modes can more easily produce
tropical 30-60-day oscillation than wavenumber two.
However, for deep convective heating profile, no 30-
60-day oscillation can be observed even if b is in a
moderately extent,

Recently, Sui and Lau (1989) studied the re-
sponses of a linear model to two idealized heating
profiles such as shallow and deep convective heating
profiles, which can be considered as the upper and
lower limits of "realistic" heating profiles. They
found that for deep convective heating profile (their
experiment E;), a 26-day mode can be observed to
travel around the globe. While for shallow convective
heating profile (their experiment E,), a slower east-
ward moving disturbance with period of 52 days can
be excited. In general, according to wave-CISK the-
ory, the most unstable wavenumber-one Kelvin wave
possesses 10-20-, 25-30- and 40-50-day period for
convective hating that has a maximum in the upper,
middle, and lower tropospheres, respectively (Lau
and Peng 1987; Sui and Lau 1989). This shows that
our linear model is basically capable of describing
the main property of linear slow-moving waves-CISK
disturbances in the tropical atmosphere. However,
recently, the ocean-surface perpetual January R30
model performed by Hayashi and Golder (1993) dem-
onstrated that the periods of the simulated intrasea-
sonal oscillations are not extremely sensitive to the
vertical heating distributions. They conjectured that
this may be due to nonlinear process. Consequently,
it appears to be of importance to investigate the dy-
namical properties of nonlinear Kelvin wave-CISK
modes. In next section, we will give the main results
of nonlinear Kelvin wave-CISK modes.

4. Nonlinear Kelvin wave-CISK modes and their
interaction

In order to clarify differences between linear and
nonlinear results, the numerical results of nonlinear
Kelvin wave-CISK modes for zonal wavenumbers one
and two will be respectively described in detail in
this section for the same vertical convective heating
profiles as in section 3.

4.1 Zonal wavenumber one

Similar to section 3, we will still devide three cases
to discuss our nonlinear results in this subsection.
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Table 2a—c describe the dependence of the periods T
and T, of nonlinear first and second baroclinic modes
on the vertical distributions and intensities of con-
vective heating.

Table 2. The periods 77 and 7 of nonlinear first and second
baroclinic Kelvin wave-CISK modes for zonal wavenumber-one
for the same three vertical convective heating profiles as linear
case and various &, in which the unit of the period is day: (a)
symmetric convective heating profile; (b) shallow convective
heating profile; (c) deep convective heating profile.

{(a)
b
0 2 4 6 8
T 15 39 39 39 39 39
Ty 39 39 39 39 39 39
(b)
b
0 1 2 3 4 S
71 15 32 48 39 33 28
T 39 32 48 39 33 28
(c)
h
0 1 3 5 7 9
Ty 15 32 41 37 32 29
Ty 39 32 41 37 32 29

4.1.1 Symmetric convective heating profile

Table 2a corresponds to the case of symmetric con-
vective heating profile. Obviously, for case without
wave-CISK, nonlinear second baroclinic modes can
exhibit a 39-day oscillation, while nonlinear first
baroclinic mode only has a 15-day period. This prop-
erty is apparently different from linear wave-CISK
theory used above. Therefore, even wave-CISK is
excluded, a 39-day oscillation can be also found for
second baroclinic mode through nonlinear interaction
with first baroclinic mode, whose period is longer
than linear case. And its total streamfield also exhib-
its a 39-day oscillation (its figure is omitted). This
conclusion had been recently confirmed by the ocean-
surface perpetual January R30 model performed by
Hayashi and Golder (1993), who showed that both the
40-50- and 25-30-day oscillations can be qualita-
tively well ¢gimulated in a realistic general circulation
model, even in the absence of air-sea interactions and
cloud-radiation feedback. However, it is interesting
to note that when a symmetric convective heating
profile that has a maximum in the midtroposphere is
considered, both nonlinear first and second baroclinic
modes possess the same period through the coupling
themselves, and their period is found to be independ-
ent of the parameter b. For example, when » 2 1.0,
this period is still 39 days, which belongs to the 30—
60 day period range.

Figures 1a and 1b give the evolution solutions of x,
and x,, and the phase trajectories (x;, x4), (xq, x3), (X2,

x3) and (x,, x4} of nonlinear system (12)-(17) for
= 2.0 and 4.0, respectively. It is found that for both
b= 2.0 and 4.0 the time-evolutions of x, are the
same, and their phase trajectories (xz, x4) are also the
same. But the other phase trajectories vary slightly
with the change of 4. In addition, we note that the
time-evolution of x; appears to exhibit chaotic be-
havior, which can be seen from the calculation of
Lyapunov exponent hereafter.

4.1.2 Shallow convective heating profile

Table 2b describes the dependence of the periods of
nonlinear first and second baroclinic modes on the
intensity parameter b of shallow convective heating
profile, where 7, and T, are assigned to be the domi-
nant periods of nonlinear first and second baroclinic
modes, respectively. From this table we can find that
when a shallow convective heating profile is consid-
ered as wave-CISK heating both nonlinear first and
second baroclinic modes still have the same period.
When b varies from 1.0 to 5.0, this period will de-
crease from 55 to 28 days. Comparing this result with
linear case in table 1b, we notice that under the same
conditions the parameter domain of & for a 30—-60-day
oscillation to occur in nonlinear theory is wider than
that in linear theory. This shows that the advective
nonlinearity favors the appearance of 30-60-day os-
cillation. Certainly, if » > 5.0 is allowed, the periods
of the two modes will belong to the 25-30-day period
band.

Figure 2 shows the dependence of the evelution solu-
tions of x; and x,, and the phase trajectories (x2, x4},
(x1, X3), (x3, x1) and (x1, x4) of nonlinear system (12)-
(17) on the intensity parameter & of shallow convec-
tive heating profile. Figure 2a corresponds to the
case of & = 1.0. Notice that when » = 1.0 x; oscillates
periodically with 55 days, while x; oscillates quasi-
periodically with the same dominant period. In this
case, the phase trajectories of system (12)-(17) are
seen to be the limit cycles. Figure 2b describes the
case of b = 3.0. It is found that for this case the solu-
tions of x, and x, are chaotic, which can be found
from the phase trajectories given in figure 2b.
Moreover, both x; and x, are found to oscillate with a
doubled period, and their dominant period is near 39
days. Here, if when b continues to increase, the cha-
otic behavior of both x; and x; seems to be more
clear. For example, in figure 2¢ for = 5.0 this point
can be clearly found. On the other hand, in order to
examine the chaotic behavior of the solutions of Eqgs.
(12)~(17), according to Lin (1993) we compute the
Lyapunov exponents of system (12)-(17), and the
obtained Lyapunov exponents are LE, = 0.0152, LE,
= — 0.0026, LE; = 0.0128, LE, = 0.0119, LEs =
0.00292 and LE; = — 0.0166. These Lyapunov expo-
nents indicate that for b = 5.0, the solutions of Eq.
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Fig. 2. The evolution solutions of x; and x,, and the phase trajectories (x,, x,), (¥, x;), (2. x} and (x,, x,) of nonlinear system {12}(17) for shallow

convective heating profile with 5 = 1.0, 3.0 and 5.0, respectively: {a) 5= 1.0; (b) 5=3.0; (v) = 5.0.

(6) are chaotic. For a fixed b the nonperiodicity can
be observed, but its dominant period is dependent on
the intensity parameter b.

4.1.3 Deep convective heating profile

Table 2¢ corresponds to the case of deep convective
heating profile. It is found that when » is between 1.0
and 9.0, a low frequency oscillation in the 29-41-day
period band can occur through nonlinear coupling
between first and second baroclinic modes. This
shows that although a deep convective heating profile
same as linear model is considered, 30-60 day oscil-
lation can be still observed in a wide range of the
parameter &. This conclusion is remarkably different
from the result of linear Kelvin wave-CISK meodes
with deep convective heating. In addition, the evolu-
tion solutions of x; and x,, and the phase trajectories
of system (12)—(17) for this case are omitied here.

4.2 Zonal wavenumber two

For three vertical heating distributions prescribed
here, no 30-60-day oscillation can be found for zonal
wavenumber two Kelvin wave-CISK modes. When b
is moderate, quasi-20-day oscillations can be only

detected for the three cases, and their figures have
been omitted here. Therefore, there is a great differ-
ence between linear and nonlinear results for zonal
wavenumber two Kelvin wave-CISK modes.

The numerical calculations in this section demon-
strate that in a wide range of the parameter b, 30-60-
day oscillation can occur through nenlinear coupling
between both first and second baroclinic modes with
zonal wavenumber-one for three different heating
profiles, and the period of nonlinear low frequency
oscillation obtained here is found to be not extremely
sensitive to the vertical distribution of convective
heating, but the period length of this oscillation still
depends on the vertical distribution of convective
heating for the same parameter 5. This conclusion is
basically consistent with the property of the si-
mulated oscillation obtained by Hayashi and Golder
(1993), who showed that the simulated low frequency
oscillation is not extremely sensitive to the vertical
distribution of convective heating. While for linear
coupling between the two modes, 30-60-day oscil-
lations can be only detected in a narrower range of
the parameter b, but the vertical heating profile must
be required to have a maximum in the lower or the
middle level of troposphere. Recently, Zhao and Ghil
{1991) have shown that nonlinear symmetric instab-
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ility could explain 25-30-day oscillation, but it fails
to explain 40-50-day oscillation. However, our non-
linear theory presented here seems to be able to
explain the 40-50-day peak of the simulated oscil-
Iations obtained by Hayashi and Golder (1993).

5. The vertical structures of linear free Kelvin
wave and nonlinear Kelvin wave-CISK mode
for zonal wavenumber one

In this section, in order to emphasize the role of the
advective nonlinearity and wave-CISK heating in
tropical intraseasonal oscillation, we at first give the
vertical streamfield structure of linear wavenumber-
one Kelvin wave without wave-CISK heating.

Figure 3 shows the time-sequence of the vertical
structure of linear Kelvin wave for zonal wavenum-
ber-one without wave-CISK heating for the initial
values x1(0) = x:(0) = 0.6, and x3(0) = x4(0) = x5(0) =
x6{0) = 0.0. Tt is found that in the case without wave-
CISK heating, the "baroclinic” structure with a oppo-
site phase between the upper and lower level of tro-
posphere of the linear Kelvin wave is not clear.
Moreover, we notice that the total vertical stream-
field of the Kelvin wave oscillates with the 29-day
period, which is near the period of the second baro-
clinic mode. This indicates that the total vertical
streamfield of linear Kelvin wave for zonal wave-
number-one without wave-CISK heating is basically
unable to describe the vertical structure of tropical
intraseasonal oscillations. However, for linear wave-
number-one Kelvin wave-CISK mode with shallow
convective heating, its vertical streamfield has a
phase reversal between the upper- and lower-
tropospheres when b is between 1.0 and 2.0 (its fig-
ure has been omitted). Therefore, linear wavenumber-
one Kelvin wave-CISK modes with shallow convec-
tive heating profile can explain the 30-60-day peak
and the vertical structure of intraseasonal oscillations
at the equator.

Figure 4 shows the time-sequence of the total vertical
streamfield of nonlinear Kelvin wave-CISK mode
with zonal wavenumber one for shallow convective
heating profile, in which & = 1.0 and the same initial
conditions as in figure 3 are allowed. It is noted that
the initial streamfield of the nonlinear Kelvin wave-
CISK mode prescribed here is the same as in figure
3a, as shown in figure 4a. Due to the action of wave-
CISK heating, the vertical structure of the nonlinear
Kelvin wave-CISK mode at day 28 exhibits a phase
reversal between the upper- and lower-tropospheres,
which can be seen from figure 4b. And this vertical
structure is found to be able to be maintained in its
evolution process. It is worth noting that at day 83
the same vertical structure as in figure 4b reappears,
which indicating that the cycle period of the vertical

structure of nonlinear wavenumber-one Kelvin wave-
CISK mode for » = 1.0 is close upon 55 days, which
is the same as in table 2b for b = 1.0. Therefore, the
results obtained here show that the vertical stream-
field of nonlincar wavenumber-one Kelvin wave-
CISK mode can describe the vertical structure of
intraseasonal oscillation in the tropical atmosphere
when all the parameters are moderate. For the stream-
fields of the other nonlinear wavenumber-one Kelvin
wave-CISK modes, they have been omitted here.

6. Conclusions and discussions

In this paper, we have investigated the dynamical
properties of linear and nonlinear Kelvin wave-CISK
modes for three vertical heating profiles, respec-
tively. It is found that in a narrow range of the heat-
ing intensity parameter b, 30-60-day oscillation can
occur through linear interaction between two vertical
baroclinic modes for zonal wavenumber-one when the
convective heating is confined to the lower and mid-
dle tropospheres. While for zonal wavenumber two,
30--60-day oscillation can be observed only when the
convective heating is confined to the lower tro-
pospheres, and the range of the required parameter is
narrower. This mechanism was first proposed by
Chang and Lim (1988). When & is larger, the two
baroclinic modes may be unstable and stationary. In
this case, its growth rate increases with the wave-
number. However, for nonlinear model, nonlinearity
in system (12)-(17) will suppress linear growth and
lead to finite-amplitude oscillations. Our numerical
results obtained here indicate that for three convec-
tive heating profiles that have a maximum in the up-
per, middle, and lower troposphere respectively, in a
wider range of the heating intensity parameter & non-
linear coupling between first and second baroclinic
modes with zonal wavenumber-one can produce in-
traseasonal oscillation in the 30-60-day period band,
but for zonal wavenumber two no 30-60-day oscilla-
tion can be found. This shows that nonlinear 30-60-
day oscillation tends to take on the wavenumber-1
structure. In addition, the streamfield of nonlinear
wavenumber-one Kelvin wave-CISK mode extremely
resembles the vertical structure of the observed 30—
6(0-day oscillation that has a phase reversal between
the upper- and lower-tropospheres, and its wavenum-
ber-1 shape can be maintained. Therefore, it appears
that the combination of the advective nonlinearity
and wave-CISK heating is advantageous to the ap-
pearance of 30-60-day oscillations in the tropical
atmosphere.

The above conclusions are aimed at the nondissi-
pative case. The very weak dissipation doesn’t
greatly affect the periods of Kelvin wave-CISK
modes if we consider the dissipation in Egs. (12)-
(17). However, if dissipation is too strong, it will
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Fig. 3. The time sequences of the total vertical streamfield of lincar wavenumber-one Kelvin wave without wave-CISK heating for the initial values x,(0) =
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make Kelvin wave-CISK modes decay. This problem
will not be discussed in detail in this paper.
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