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Abstract. In the interpretation of geomagnetic polar-
ity reversals with their highly variable frequency over
geological time it is nccessary, as with other irregularly-
fuctuating geophysical phenomena, to consider the rel-
ative importance of forced contributions associated with
changing boundary conditions and of free contributions
characteristic of the behaviour of nonlinear systems op-
crating under fixed boundary conditions. New evidence
~albeit indirect— in favour of the likely predominance
of forced contributions is provided by the discovery re-
ported here of the possibility of complete quenching by
nonlinear effects of current fluctuations in a self-exciting
homopolar dynamo with its single Faraday disk driven
into rotation with angular speed y{r} (where T denotes
time) by a steady applied couple. The armature of an
electric motor connected in series with the coil of the dy-
namo is driven into rotation with angular speed z(1) by
a torque z f () due to Lorentz forces associated with the
electric current #(7) in the system (just as certain parts
of the spectrum of eddies within the liquid outer core
are generated largely by Lorentz forces associated with
currents generated by the self-exciting magnetohydrody-
namic (MHD) geodynamo). The discovery is bascd on
bifurcation analysis supported by computational studies
of the following (mathematically novel) autonomous set
of nonlinear ordinary differential equations:

de/dt = z(y — 1) ~ Bzf(z),
dy/dt = a(l — z%) — Ky,

dz/dt = zf(z) — Az, wheref(x) =1 — ¢+ eox,
in cases when the dimensionless parameters {&x, 4, 5, A, o)
are all positive and 0 < ¢ < 1. Within those regions of
{a, 3, Kk, A, 0} parameter space where the applied cou-
ple, as measured by ¢, is strong enough for persistent
dynamo action (i.e. x # 0) to occur at all, there are in
general extensive regions where x(7} exhibits large am-

Correspondence to: Rayvmond Hide

plitude regular or irregular (chaotic) fluctuations. But
these fluctnating régimes shrink in size as e increases
from zero, and they disappear altogether when € = 1,
leaving only steady régimes of dynamo action.

1 Introducticn

1t has recently been shown (Hide et al., 1996) that the
electric current I generated by a self-exciting Faraday-
disk homopolar dynamo with a motor {or capacitor,
sece Paynter, 1982; Hide et al., 1996) placed in series
with the coil can exhibit multiply-periodic as well as
chaotic persistent temporal fluctuations, even when the
applied couple that drives the Faraday disk into rotation
is steady, if the torque T on the armature of the motor is
proportionat to I. Here we report the unexpected find-
ing that persistent fluctuations are completely quenched
when T is proportional to I?, the square of the current.
Partial quenching occurs in the intermediate "quadra-
tic” case when T is proportional to

(1—e)I+eSI? (1)

where §(A7Y) is a constant and the value of € ranges
from zero to unity.

These results are derivable from the following ma-
thematically-novel set of nonlinear ordinary differential
equations that govern the behaviour of the system:

& =z(y—1)-fzf(z) (2a)
§=a(l-2%) ~ry (2b)
z=zf(x)—Az (2¢)

where the dimensionless dependent variables {x, y, z) are
functions of the re-scaled dimensionless independent time
variable 7, £ = dz/dr etc., and

fl@)=1—-¢+eox, (3)



202

o being a dimensionless measure of S. In Egs. (2),
x(r) is the re-scaled electric current generated by the
dynamo, y{7) is the angular speed of rotation of the
disk, and z(7} is the angular speed of rotation of the
armature of the motor.

The rotating Faraday disk is designed so that cur-
rent flows radially across the disk between the station-
ary brushes on the rim and axle. Eq. (2a) expresses
Kirchhoff’s laws applied to the equivalent, circuit of the
dynamo, with the term —3zf{x) representing the back
electromotive force in the motor. Eqs. (2b) and (2c) are
the equations of motion of the disk and motor respec-
tively, with the —az? term in the former and the z f(z)
term in the latter representing torques due to the action
of Lorentz forces. In addition to € and o there are four
other dimensionless and essentially non-negative param-
eters namely («, 3, &, A) that determine the behaviour of
the system. In Eq. (2b), a (which is inversely propor-
tional to the moment of inertia of the disk) measures the
strength of the applied couple and s measures the coef-
ficient of mechanical friction in the disk. 3 is inversely
proportional to the moment of inertia of the armature
of the motor, the motion of which is retarded by a fric-
tional torque proportional to Az (see Eq. (2¢)).

2 Self-exciting dynamos

Invented in the last century independently by Varley,
Wheatstone and the Siemens brothers following Fara-
day’s discovery of motional induction, homopolar dy-
namos based on the self-excitation principle were used
in the first electric lighting installations, and they played
a role in the development of more practical systems of
public electricity supply (Bowers, 1982; Jeffrey, 1997).
Mathematical investigations of the detailed hehaviour of
self-exciting homopolar dynamos of varying degrees of
complexity are more recent, being facilitated by devel-
opments in the theory of nonlinear ordinary differential
equations and the availability of computers, and moti-
vated in many cases by the general acceptance by geo-
physicists and astrophysicists that the magnetic fields of
planets, stars (and even galaxies) are due to self-exciting
MHD dynameo action in their electrically-conducting fluid
interiors. This process was first proposed by Larmor
(1919) in connection with the Sun and it is now the sub-
ject of much modern research (for references sce Weiss,
1994; Hollerbach, 1996; Zweibel & Heiles, 1997). The
homopolar dynamo is seen as a useful ”low-dimensional”
analogue from which helpful insights can be obtained
into the much more complicated MHD dynamo pro-
cesses in continuous fluids.

An extensive theoretical literature now exists on ho-
mopolar dynamos as intrinsically important nonlinear
electromechanical systems of possible geophysical and
astrophysical interest (for references see Rikitake, 1966;
Moffatt, 1979; Knobloch, 1981; Melchior, 1986; Kono,
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1987; Ershov et al, 1989; Moreau, 1990; Jacobs, 1994;
Dubois, 1995; Hide et al., 1996; Hide, 1997). It starts
with the pioneering study by Bullard (1955} of the sim-
plest imaginable case, namely that of a homopolar dy-
namo with a single Faraday disk driven into rotation by
a steady applied couple when (a) azimuthal currents are
prevented from flowing in the disk {(cf. Moffatt, 1979,
Knobloch, 1981), (b) mechanical friction in the disk can
be neglected, and (c) there are no additional elements
in the circuit (such as electric motor connected in series
with the coil, as described above). Then the governing
equations are (2a) and (2b) with the parameters 3 and
& both set equal to zero.

The nonlinear partial differential equations that gov-
ern MHD dynamos express the laws of dynamics, ther-
modynamics and clectrodynamics as applied to a con-
tinuous medium. The first step taken by theoretical
geophysicists in any discussion of the interpretation of
geomagnetic polarity reversals is to note that for ev-
ery solution (B,u) (where B is the magnetic field and
u the Eulerian flow-velocity field) of these eguations,
reflectional symmetries are such that there is a corre-
sponding solution (—B, u) in which the magnetic field
B (but not u) everywhere has the opposite sign {pro-
vided of course that the boundary conditions are inde-
pendent of the sign of B). The magnetic field is propor-
tional to z in the homopolar dynamos here discussed,
and we note that for every solution {(z,y, z) of the gov-
erning Eqs. {2) & (3) in the case when ¢ = 1, there is a
magnetically-reversed solution {—x,y, z) with no corre-
sponding change in the motions, as represented by y and
z. This case is geophysically more relevant than the case
when ¢ = (0, which - though interesting and important in
its own right as a nonlinear electromechanical system ex-
hibiting rich and varied behaviour (see Hide et al., 1996)
- is characterised by sclutions (z,y, z) for which there
are always corresponding solutions {(—x,y, —z), imply-
ing that the rotation of the armaturc of the motor z
as well as the current z differ in sign, leaving just the
rotation of the disk y unchanged.

3 Bifurcation analysis

Solutions of Eqs. (2) can be classified on the basis of a
régime diagram with the (essentially non-negative) di-
mensionless parameters 3 = 8/ as abscissa and & =
a/k as ordinate. There are two equilibrium solutions,
the first being

(‘TO’yOazO) = (0,@,0) (4)

irrespective of the value of €. This solution corresponds
to no dynamo action and it is stable when & falls below
a certain critical value, which in general depends on 3
and the other parameters (r, A, o and ¢, see below), but
not otherwise.
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Fig. 1. Illustrating the quenching of chaotic solutions z(7), y(7) and z(7) obtained in a case when ¢ is zero, namely when (a, 8,%,)) =
(20.0,2.0,1.0,1.2) (see Figure 9 of Hide et al., 1996), by changing the value of € to unity. Diagrams (i)-(iii) refer to the timeseries
from (arbitrary) 7 = 0 to 7 = 24 units shown in diagrams (iv)-(vi) for the case when ¢ = 0, which also show the steady behaviour
found (after 7 = 30) when ¢ = 1 (and ¢ = 1). The measured values are consistent with the stable equilibrium solution (zo,¥0,20) =
(+0.9364, 2.462,0.7307) given by Eq. (6). For comparison, note that the corresponding unstable equilibrium solution given by Eq. (6)
for the case € = 0 is (zo, Y0, 2z0) = (£0.9309, 2.667, £0.7758).



204 Hide: Nonlinear quenching of current fluctuations
1 L] 1 i 1 ] 1
1 £ ] ] 1 1 ]
1 ’ ] I 1 1 ]
1 k " I 1 1 1
1 ] 1 1] 1 ] 1
: 13 r 1 1 1 1
1 1 1 1 1
........... R S S : ]
1 1 1 [ [ 1
] 1 1 L) [ 1
] 1 1 L} ] 1
+ 1 1 L) ) 1
i [] ] L} ] 1
1 1 1 + ] '
— ! ) ] + 1 ]
L A L S, LI TR b i ]
1 ) 1 1 1] I
1 1 1 1 1] Ll
1 1 1 1 r ]
] 1 1 1 L3 Ll
) 1 1 . 1} 1 1
t 1 1 N 1 1 ]
1 1 1 1 1 1 V
IR I 1L THRN — i S G I . SRS 1 | SO S AL (RN
1 [} L3 T 1 )
i L} 1 + 1 1
1 1 ) 1
1 1 1 [} ]
1 1 1 ] 1
1 1 1 ) 1
1 1 1)
ST AR S, . £y b du S Sl 1 SN L L
1 ] 1 ]
] 1 1 1
) 1 [} il
) 1 1]
i i ‘ i H i
1 1 1 1 1
D teeoo. B I N T 1 B e L !
1 ] |} 1 ] 1
! 1} 9| 1) 1 t
1 ) 9| » 1 ]
1 1 L] 0 1 1
" ¥ 1 ] 1 i
L] 1 1 1 ] ]
1 1 1 1] 1 1
........... A e e ]
1 1 1 L] 1 1
1 1 1 L] 1 ]
1 1 L} r ]
i e=1] =01 ; =1 : e=0
Il 1 ] 1
1 1 1 1 i ]
___________ . . U SO DU S
] 1 1 1 1 ]
1 ] 1 ) 1
: ! i : ' :
1 ] 1 1 1 1
1 1 1 [} ] 1
1 1 1 1 ] ]
1 » 1 1 ] 4

-.‘

Fig. 2. More detailed version of an x(7) timeseries with (¢ = 1) and without {¢ = 0) quenching.

The second equilibrium solution, which does depend
on the value of €, corresponds to steady {but not neces-
sarily stable) dynamo action, which gives way through
Hopf bifurcations (see e.g. Guckenheimer & Holmes,
1986; Thompson & Stewart, 1986; Mullin, 1993) to fluc-
tuating dynamo action when the parameters (a, 3, &,
A, o, €) are such that the solution is unstable to in-
finitesimal oscillatory disturbances. Thus, it is possible
in general to divide the (3, @) régime diagram into three
types of region, where, respectively, there is no dynamo
action, where there is steady dynamo action, and where
there is fluctnating dynamo action, which turns out to
be highly chaotic in certain sub-regions and more regu-
lar in others.

It is readily shown that the second equilibrium solu-
tion is

172
T (120 +3)Y
wo | = 1+ (5)
vy 172
£ (- 30+
in the case when ¢ = (, and
a1 1/2
To + (7r'1+022;@
w = g ©
Zo g a—1
3 \aFoig

in the case when ¢ =1 (see Eqgs. (2) & (3)).
According to a detailed analytical and numerical study
of the case when € = 0 (Hide et al., 1996}, the region of

no dynamo action then occurs where

(e=10) (7)
in the (3, a) régime diagram. Steady dynamo action is
found in that part of the régime diagram lying above
the straight line & = 1+ 3 and to the left of the curved
line

a < min{l+ 3,1+,

(8)

extending from the point where (3,&) = (A, 1+ \) at
its lowest end and tending asymptotically to the line
where 3 = k when & = oo. Throughout the extensive
region lying to the right of the curved line of Hopf bi-
furcations given by Eq. (8} and above the line @ = 1+ A
the values of & and 3 are such that steady equilibrium
solutions are unstable.and fluctuating dynamo action
oceurs. The fluctuating solutions exhibit varying de-
grees of complexity, including multiple periodicity and
chaos, behaviour gualitatively similar to that found in
other systems with more than two dependent variables
governed by autonomous nonlinear ordinary differen-
tial equations, (see e.g. Guckenheimer & Holmes, 1986;
Thompson & Stewart, 1986; Mullin, 1993).

Now consider the case when ¢ = 1. In contrast to
the case when ¢ = 0, the second equilibrium solution
— which is given by Eq. (6) and is non-existent when
@ < 1 — may be shown by the technique of bifurca-
tion analysis to be stable for all values of & that are
greater than unity, irrespective of the values of 3 and
the other dimensionless parameters {k, A and ¢). This

a=A28-r-N/2(k~B)+353/2+1
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remarkable theoretical result gains support from sub-
scquent numerical calenlations in a few representative
cases (kindly carried out by Dr. David Acheson), where
only steady persistent solutions were found after initial
transients had died away. Further successful tests of the
theoretical prediction of complete quenching when e =1
were carried out using an analogue computer based on
an etectronic circuit (kindly designed and constructed
at my request by the late Dr. Neville Robinson and Dr.
Guy Peskett) for solving Eqs. (2) {see Figs. 1 & 2).

4 Concluding remarks

Other physical systems in which nonlinear processes pro-
mote order rather than disorder are not, of course, un-
known. But at the start of the present study it was
thought on general grounds that taking € to be non-
zero, thereby increasing the number of nonlincar terms
in Egs. (2) from two to four, might serve to increase
the complexity of the fluctuations, possibly even enlarg-
ing the regions of (3,d) parameter space where chaos
occurs. So the discovery that fluctuations are strongly
inhibited by the processes represented by these extra
nonlincar terms and that all fluctuations seem to be
completely quenched when ¢ = 1 was most certainly
not anticipated.

Some progress is however now heing made towards a
physical interpretation of the quenching phenomenon,
which in retrospect seems less surprising than when it
was first discovered. But its discussion lies beyond the
scope of this short report, as do details of (a) the anal-
ysis of the more complicated general case when e takes
valnes between 0 and 1, and (b) any implications of
the quenching phenomenon in self-exciting homopolar
Faraday-disk dynamos for future theoretical investiga-
tions of self-exciting magnetohydrodynamic dynamos,
in which dynamical effects of Lorentz forces must, of
course, be simulated correctly. These matters will have
to be treated elsewhere, and it should also be prof-
itable to subject the novel autonomous set of nonlin-
ear ordinary differential equations given by Eqgs. (2) to
detailed mathematical scrutiny without in the first in-
stance placing restrictions on the signs of the parametcrs
@, 3, k, A o and €.
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