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Abstract. We study the relation between changes in
the Eulerian topology of a two dimensional flow and the
mixing of fluid particles between qualitatively different
regions of the flow. In general time dependent flows,
streamlines and particle paths are unrelated. However,
for many mesoscale oceanographic features such as de-
taching rings and meandering jets, the rate at which the
Eulerian structures evolve is considerably slower than
typical advection speeds of Lagrangian tracers. In this
note we show that for two-dimensional, ediabatic fluid
flows there is a direct relationship between observable
changes in the topology of the Eulerian field and the
rate of transport of fluid particles. We show that a
certain class of flows is amenable to adiabatic or near
adiabatic analysis, and, as an example, we use our re-
sults to study the chaotic mixing in the Dutkiewicz and
Paldor (1994) kinematic model of the interaction of a
meandering barotropic jet with a strong eddy.

1 Introduction

For two dimensional, incompressible flows, the equations
describing the the time evolution of Lagrangian particle
trajectories are exactly those of a Hamiltonian system
where the phase space of the dynamical system is pre-
cisely the physical space of the flow. This formulation of
the Lagrangian problem, pointed out by Aref (1984), al-
lows one to apply the geometric techniques of dynamical
systems theory (see for example MacKay et al. (1984),
‘Rom-Kedar et al. (1990), Wiggins (1992)) to determine
particle (or “phase space volume”) flux with respect to
surfaces separating regions of different kinematic behav-
ior {i.e. the interior/exterior of a ring or eddy). Studies
of such ‘chaotic mixing’ have been conducted for a vari-
ety of oceanographic flows including tidal basins (Rid-
derinkhof and Zimmerman, 1992), kinematic models of
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meandering jets (Samelson, 1991) and numerical simu-
lations of quasi-geostrophic jets (Lozier et al., 1997).

While the Lagrangian, dynamical systems viewpoint
is a powerful tool for the study of particle dynamics,
in many applications one hopes to deduce the nature
and degree of particle mixing from the motion of coker-
ent siructures in the Eulerian frame. A classic oceano-
graphic example is the estimate of Lagrangian particle
fluxes from intermittent observations of Eulerian data,
sea surface height or temperature, provided by satel-
lites. The simplest classification of these structures is to
lump them into either of two categories; those with open
streamlines, jets, and those with closed streamlines ed-
dies (see, e.g., Wray and Hunt (1990)). Nondegenerate
contour plots are built of eddies and jets as well as crit-
ical contour lines that separate the jets and the eddies.
These plots deform in time and often exhibit qualitative
changes or “catastrophic events”, such as the creation
and disappearance of eddies, detachment of a ring from
a jet, merger of eddies, etc. We will refer to such events
as Eulerian bifurcations.

Our main goal in this paper is to provide a rigorous,
mathematical relationship between topological changes
in an Eulerian field and Lagrangian particle mixing. We
would like to know precisely when and how observed bi-
furcations in the topology of the Eulerian velocity field
indicate chaotic transport in the Lagrangian dynam-
ics. Obviously, since particle pathlines and instanta-
neous streamlines are not coincident in a time depen-
dent flow, there exists no general relationship between
changes in Eulerian topography and chaotic mixing of
Lagrangian particles. However, observational evidence
indicates that in many geophysical situations, the tem-
poral evolution of mesoscale structures occurs on time
scales which are slow compared to typical particle speeds
(see Holdzkom et. al. (1995) for one particular exam-
ple). In such adiabatic cases, particle paths and stream-
lines are correlated over significant lengths of time and
it 1s possible to establish a relationship between defor-
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mations of the Eulerian field and Lagrangian mixing.

We begin this study by defining Eulerian bifurcations
in geometric terms for two-dimensional, incompressible
flows. Throughout, we make use of the non-divergent
nature of the two-dimensional flow, hence our results are
strictly applicable in the quasi-geostrophic limit. Loosely
speaking, we define an Eulerian bifurcation within a
bounded region as a change in the number of connected
components of a level curve of the streamfunction. In
the generic case, such a change is manifested by eddy
creation, eddy disappearance, eddy detachment, or eddy
reattachment. While there is a substantial bedy of lit-
erature on eddy formation especially in the context of
oceanographic jets, (see, e.g., Pratt and Stern (1986),
Feliks and Ghil (1996}, and the references cited therein),
Theorem 2.1 provides a useful dynamic means of classi-
fying eddy formation, disappearance, detachment, and
reattachment in terms of the eigenspace of frozen time
stagnation points.

In Section 3 we focus on adiabatic flow fields. We state
a readily observable geometric condition for the pres-
ence of Lagrangian mixing: Increasing defached eddies
or shrinking reattaching eddies imply transport of fluid
particles in directions transverse to the eddy boundary.
Using a result due to Kaper and Kovaéié (1994), we are
also able to predict the corresponding Lagrangian flux
directly from Eulerian observations if the flow is time-
periodic.

As an example of the application of the theorems, we
study a kinematic model of eddy-jet interaction (Dut-
kiewicz and Paldor, 1994) in Section 4. For the case of
strong eddies, where the controlling saddle type fixed
point exists for all times, we use the results from Sec-
tion 2 to predict the occurrence of eddy detachment and
reattachment in space and time. We also use the eddy
growth criterton to show the presence of chaotic La-
grangian transport of particles between the jet and the
eddy. We close the paper with conclusions and remarks
about general, aperiodic time dependence in Section 5.

2 The geometry of Eulerian bifurcations

The velocity field of a two-dimensional, incompressible
fluid satisfies the equation

. Ap(z,y,t)
x ay ¥

_ . OY(z,y,1)
T T Oz !

where the smooth streamfunction v is a time-dependent
Hamiltonian for particle motions. To eliminate the in-
herent non-uniqueness in the definition of ¢ for a given
flow, we assume that 1 contains no spatially indepen-
dent additive terms. At any point in time, particle veloc-
ities are tangent to the instantaneous streamlines, i.c.,
the level curves of 4. In the analysis of experimental or
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Fig. 1. The main concept of Eulerian bifurcations.

numerical data, one typically follows the evolution of a
set. of streamlines whose associated t-values fall in the
range of interest. For this reason, we develop the con-
cept of Eulerian bifurcations based on the geometry of
streamlines. However, a similar treatment can be given
for other Eulerian fields, such as temperature, density,
etc.

Let us fix a bounded, open, and connected set B ¢ R2
in the physical space of particle motions. Let us also fix
a number ¢ € R, and for any time ¢ define the two open
sets

S5
Sz (1)

{(z,y) € B| ¥(z,y,t) > c},
{(z.v) € B| ¥(z,y,t) < c}.

The dividing line between the two sets is given by the
time-dependent curve

Te(t) = 05 (1) = {(2,y) € B| ¢(z,y,) =} .

Note that SF(t), S7(¢), and [.(t) give a partition of B
for any ¢, including the possibility of a trivial partition
when only S*{t) or S (t) is nonempty. Also note a
geometric interpretation of () in the extended phase
space of the (z,y,t) variables: T.(7) is the intersection
of the plane ¢ = 7 with the two-dimensional surface
Yz, y,t) = c.

We could color the streamlines with 1 > ¢ with darker
colors and those with ¢ < ¢ with lighter colors. Intu-
itively, a change in coherent structures would mean the
mixing of these two colors, e.g., the penetration a blob
of dark colors into a region that was originally occu-
pied fully by light colors (see Fig. 1) In the extended
phase space of the variables 2,y, and ¢, such an event
is manifested by the folding and splitting of the sur-
face ¥(r,y,t) = e (see Fig. 2). Our definition below
puts this intuitive notion of Eulerian bifurcation into a
mathematical framework.

Let N:(t) denote the number of connected compo-
nents of the dividing curve [.(¢). In the following we
will be interested in cases when both 5F(t) and ST (1),

I
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Fig. 2. The manifestation of an Eulerian bifurcation in the ex-
tended phase space.

and hence T'.{t) are nonempty on the same time inter-
val. Note that N,(¢) is a well-defined, finite, nonzero
integer for any ¢ € [tg,¢1).

Definition 2.1 We say thet an Eulerian bifurcation
of the streamline ¢ = ¢ occurs at t = t* € (ig,t;) in B,
if the value of N changes at {*, i.e., the function N.(t)
has a disconiinuity at t = ¢*,

Hence, by an Eulerian bifurcation we mean a change
in the topology of the two regions S} (¢) and S7 (), since
at least one of them gains a connected component if the
value of N, increases, or looses a connected component
when N, decreases. As we will see below, this connected
component is typically an eddy, i.e., a closed contour
curve of the streamfunction .

1f the gradient

V(2 y,t0) = (0%(x, v, o)/ 0z, 0y¥(z, y.10)/ Oy)

is nonzero restricted to I':({g), then I'c(tg) is a smooth
curve by the implicit function theorem. Hence T'.(fo)
locally divides the set B into two open regions, one of
which is characterized by streamfunction values above ¢
and the other is by values below ¢. By the continuity of
Vi in t, this distinction between the two sides of T, per-
sists for times close to tg. Hence although the connected
components of the curve I',{t) in general move in time,
the two regions S (¢) and S () remain locally sepa-
rated, and the value of N.(f) is constant. As a result,
no Eulerian bifurcation occurs.

For some larger value t = t,, however, we may have a
point p, = (x., ) € (L), such that

qu(mm ymtc) =40 (1)

_holds. In the generic case, we can assume that this event
occurs under the nondegeneracy conditions

&
det, 0, 2
[a.’h‘ay (a?c,yc,tc)] # ( )
oy
id £ 0.
at (Icuyc‘.tc)
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Fig. 3. Nondegenerate critical points for the streamfunction and
Enulerian bifurcations.

The first condition implies that at the point p., the func-
tion ¥ (&, y,1.) has either a local minimum, a local max-
imum, or a saddle point. The second condition means
that the value of the streamfunction changes in time at
the point p.. It allows us to express the variable ¢ on the
surface ¢ = ¢ as a function, f, of (x,y) near (x., ¥, tc)
in the extended phase space. The function t = f(=x,y)
also has a local extremum at p., since by implicit differ-
entiation we obtain

V’(,[J(-’Ec,yc,tc)
vf zC!yC = ~Ta s 3
( = ) %¢($Clycitc) ()
82 2_2¢(Icayclt6)
f(xc:yc) = _B;y—_m__-
0zdy §?¢(wcsycate)

Note that the level curves f(z,y) =t coincide with the
level curves 1¥(z, y,t) = ¢ near p, for times close to ¢,.

Suppose now that f has a local minimum at p. (see
Fig. 3a). Then a connected component of [ (f.) will
turn from the point p. into'a smooth closed curve as
time increases. This event increases the number N.(f)
by one for ¢ > t.. If p; is a point of local maximum for
f, then the corresponding component of [,(¢) will be a
closed curve that shrinks to the point p. and then disap-
pears (see Fig. 3b). Hence, this event will decrease the
number N (1) by one at t = t,. Finally, if f has a sad-
dle point at p., then T'.(t) undergoes a self-intersection
and a metamorphosis at p.. This event may or may not
change the number of connected components of T,. The
number remains unchanged if neither of the colliding
components of I, is a closed curve. This case is a simple
“exchange of streamlines”, as shown in Fig. 3¢. How-
ever, V. changes if one of the two interacting compo-
nents is a closed streamline, either before or after the
collision, as shown in Fig. 3d. Equivalently, N, changes
at £ = t, if [',(t,) contains a closed loop attached to the
point p.. This will certainly be the case if T,(¢.) inter-
sects the boundary §B of the domain B at no more than
two points.

The above discussion shows that in the generic case,
an Eulerian bifurcation is manifested by a creation, dis-
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appearance, detachment, or reattachment of closed stream-

lines, i.e., eddies. Using the formulas in (3), and the
matrix

E(pc,tc) = é%#’(ﬂ»‘c, yc)tc) : 'g-g%';?f)(iﬂc, yc:tc): (4)

we can summarize our discussion as follows.

Theorem 2.1 Suppose that the streamiine ' (t) infer-
sects the boundary of B in precisely two points for all
t € [to,t1]. Assume further that there exists a time &, in
the interval and a poinl p. = (z.,y.) € I'(t.) such that
V(ze, Yo, tc) = 0 and the matriz E(p,,t,) defined in
(4) is nonsingular. Then an Eulerian bifurcation of the
streamline ¢ = ¢ ocecurs at ttme 1t = t,. The bifurcation
15 an

a}) eddy creation if E(p.t.) is negative definite,

b) eddy disappearance if E(p.1l.) is positive defi-
nite,

¢) eddy detachment or reattachment if F(p,. t.)
is indefinite, i.¢c., # has a sirictly positive and a strictly
negative eigenvalue.

If an Eulerian bifurcation satisfies the nondegeneracy
condition of Theorem 2.1, then we call it a nondegener-
ate Eulerian bifurcation.

We now make several remarks in order:

1.. Eulerian bifurcations of streamlines are not isolated events:
they alsc occur on nearby streamlines at some nearby times. This
follows from the fact that equation (1) can locally be solved for
values of t close to t;, which is guaranteed by the first non-
degeneracy condition in (2) and the implicit function theorem.
The solution is a one-parameter family of points (z{t),y.(¥)) =
(zc,ye)+O(t—t.), which gives the location of nondegenerate criti-
cal points on nearby streamlines for times close to tc. By the conti-
nuity of the matrix E in pc and ¢, this means that the same type
of Eulerian bifurcation occurs on nearby streamlines at nearby
times.

2.. Eddy creation and disappearance are “discontinuous” events,
as eddies from region 5} get mized into region $7° {or vice versa)
without crossing the boundary between the two regions. By the
same token, eddy detachment or reattachment are continuous
events. We will refer to such an event as a continuous Eulerian
bifurcation.

3.. Since eddy detachment or reattachment always happens through
the formation of a closed loop in a streamline, in such cases the
Hamiltonian system generated by 1(z, y, tc) necessarily has a ho-
moclinic or heteroclinic orbit attached to the saddle point p..
Hence the region B can always be picked in a way that its bound-
ary is intersected at precisely two points by the components of the
stable and unstable manifold of the saddle-point pc, but is nei in-
tersected by the homoclinic loop of interest. Thus the intersection
condition of Theoremn 2.1 can be replaced by the condition that the
Hamiltonian ¥(x,y, tc) has a homockinic or keterochinic orbit at-
tached te the point p.. One can use the intersection condition if
the details of the contour plot of ¥(x, v, t.) are not exactly known,
e.g., when the vector field is numerically generated. In such a case
one only has to check through the boundary of a suitable domain
B to find the number of points at which the streamfunction takes
the value ¢. By the continuity of 3, this algorithm is robust with
respect to numerical errors.
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4.. In the case of eddy creation or disappearance, the point p. is
a center-type fixed point for the Hamiltonian (=, y, tc).

§.. We note that while the above bifurcation results are applicable
to any Eulerian scalar field, f{z,¥,t), passively advected fields
violate the nondegeneracy conditions (1} and {2) by definition.
The advection equation,

af
1 .Vf=0,
61+v f

implies that for a general velocity field v, the time derivative of
the scalar is identically zero when the gradient is zero. This im-
plies that topological changes of the type classified here require
dissipative effects, however small, in the governing PDEs.

3 Adiabatic flows

Adiabatic flows are governed by velocity fields whose
explicit time-dependence is slow. Such flows are rele-
vant models for various mesoscale geophysical situations
where the speeds of pertinent Eulerian structures are
significantly slower than representative particle speeds.
For example, the phase speed of Gulf Stream mean-
ders (Song et al., 1995) and the modulation frequency of
warm core rings (Holdzkom et al., 1995) are believed to
be small compared to the advection speeds of particles
contained in these structures.

Adiabatic velocity fields derive from streamfunctions
of the form ¢(z,y,€t), where ¢ is a small parameter.
Introducing the variable z = ¢t, one can describe the
dynamics of the particles by a three-dimensional, au-
tonomous system of the form

. OY(z,y.2)

I = —_ ay ,

. OY¥(z,y,2) .
U (9
z = e

This system has the important feature that for ¢ =
0, the variable z is an integral. Hence, in the adia-
batic limit the particle motions indeed follow the level
curves of ¥(zr,y, 2z} with z fixed. (Note that in gen-
eral, the fictitious particle motions generated by (z,y) =
(—wz(z,y,10),¥y(x,y,t0)) are unrelated to the true par-
ticle motions governed by

(£.9) = (—v¥z(z,y,1), ¥yl(z,y,2)) .) This fact distin-
guishes adiabatic systems from the point of view of trans-
port, because the deviation of particles from streamlines
only occurs on long times scales.

For Lagrangian mixing to take place for € > 0 small.
we need the existence of qualitatively different regions
for the ¢ = 0 lumit of system (5). This can be as
sured by assuming the existence of & saddle point p{z) =
(zp(z), yp(z)) with a homoclinic solution
¥R (t;2) = (z*(t; 2), y*(¢; 2)) for the first two equations
in (5) for a range of z values, say z € {z—, z%]. Then for
€ = 0, the two-dimensional homoclinic manifold

o= {{z,p,2) | HeRiz=2"(t;2), y = y*(t:2)}
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divides the three-dimensional phase space of (5} into a
simply and a doubly connected region with qualitatively
different solutions. T'y connects the set

Py={(z.y,2) | 2 = 2p(2), y = pp(2), 2 € [27, 2]}

to itself. Py clearly admits two dimensional stable and
unstable manifolds W?*(Fy) = W*(FPy) = I'p. Py is a
one-dimensional, normally hyperbolic invariant mani-
fold, hence it perturbs to a nearby, locally invariant
manifold P for ¢ > 0 small (Fenichel, 1971). Local
invariance means that solutions starting on P, can leave
the manifold only through its boundary. Ultimately, all
solutlons will leave P, in both forward and backward
time since z = ¢ # 0, i.e., P is a compact piece of a
single slow solution. As shown by Wiggins (1987) (see
also Wiggins (1987)), the persisting (locally invariant)
stable and unstable manifolds W¥(P;) and W*(P,) in-
tersect each other transversely if the Melnikov function

400
M= [ S waa - Rewa|a @
has a transverse zero zo which falls in the range [2_, z;].
Each transverse zero of this function indicates a differ-
ent solution which has a compact piece in W¥(P,) N
W?(FP.). Kaper and Kovagi¢ (1994) found the following
relationship between the Melnikov function and the area
A(z) enclosed by the unperturbed homoclinic solution
vh{t; 7):
dA(z)

M(z)= o (7)

This formula means that each nondegenerate local ex-
tremum of the area function A(z) (see Fig. 4) gives rise
to a transverse zerc of M(z).

If the function M (z) has at least two transverse ze-
ros 21,z € [z7, z%], then at least one three-dimensional
lobe (three-lobe) is formed by the intersecting manifolds.
This lobe is the volume enclosed by the subsets of the
stable and unstable manifolds that are bounded by two
intersection orbits, as shown in Fig. 5. By the invari-
ance of W¥(P;) and W*(F.), the three-lobe is a locally
invariant set. Once such a lobe is present, it provides a
“channel” through which a solution 7(f) can travel from
the exterior of the homoclinic manifold Ty to its interior
(see Fig. 5). Therefore, Lagrangian transport of initial
conditions occurs whenever M(z) has at least two, dis-
tinct, transverse zeros.

By the area-preserving nature of the flow map (zg, ) —

{z(t; vo), y(1; z0)), the intersections of the three-lobe with
z = zg = ¢tp surfaces has the same area for all 25 ¢

[27, z*] (see Fig. 5). The intersection of the three-lobe

with these constant time surfaces gives two-dimensional

lobes (two-lobes), as seen from Fig. 5. Kaper and Kovaéié
showed (see also Kaper and Wiggins (1991)) that the

area Ar of the two-lobe obeys the formula

A= [ MGz + 000 = 4G - 4y + 00, ®)
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Fig. 4. Relationship between the geometry of the homociinic
manifold and transverse zeros of the Melnikov function.

v

=et”

Fig. 5. Lagrangian transport through a three-dimensional lobe.
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where z; and z; are adjacent transverse zeros of the Mel-
nikov function. Note that the two-lobe area is of order
(1), which is due to the singular perturbation nature
of adiabatic problems. All facts about lobes that we have
discussed so far remain valid even if z; and zo are only
topologically transverse zeros of the Melnikov function
M(z), t.e., they have a finite order of degeneracy.

Two special cases arise in applications. The first spe-
cial case is “infinite time dynamics”, 1.e., when the (ape-
riodic} streamfunction 1 is considered a good model for
all values of z = et. If the saddle point p(z) exists for
all z € (z7,z%) = (~oo, +oc) with its eigenvalues uni-
formly bounded away from zero, and the right-hand-side
of equation {5} is uniformly bounded in 2, then a slow
manifold P, exists again for all values of z by a result of
Coppel (1978). Furthermore, the usual Melnikov caleu-
lation for the intersection of W¥(F,) and W*(F;) applies
(see, e.g., Balasuriya et al. (1998) for details) and yields
the function M (z) as defined in (6).

The second and more important special case is when

1 is T-pericdic in €t, in which case we can choose z+ =
¥~ 4+ T, and P, is in fact a slow periodic orbit. Further-
more, W¥(P,) and W*(P,) are invariant manifolds (i.e.,
not only locally invariant manifolds), and M(z) is pe-
riedic in z. As a result, a single transverse zero implies
the presence of infinitely many transverse zeros, which in
turn implies the presence of a homoclinic tangle for the
corresponding Poincaré map. Then the two-dimensional
lobes described above are just the usual subjects of lobe
dynamics (see, e.g., Wiggins (1992)).

3.1 The eddy-growth criterion for time-periodic flows

If an Eulerian bifurcation occurs in a time-periodic adia-
batic problem and the participating eddies satisfy a non-
degeneracy condition, then Lagrangian transport must
also take place. We formulate this result in the following
theorem.

Theorem 3.1 Consider the streamfunciion ¥(z,y,€l)
and assume that i 1s T-periodic in ils last argument.
Suppose further that for some fired ¢ > 0 and for any
te € [0,T), there exists a point p.(et.) = (zc(ete), ye(ete))
such that a nondegeneraie, continuous Fulerian hifurca-
tion occurs at the streamline containing p.(et.) ai time
t = t.. If the transporl happens via eddy detachment,
assume that the area of the detached eddy at seme time
t =1* > 1. is bigger than its size al t = t,. Similerly, if
the Eulerian bifurcation happens through eddy reattach-
ment, assume that the area of the unatiached eddy at
some lime t = 1% < . 15 bigger than tls size at { = t,.
Assume further that the funclion p (-} is smooth.

Then for e > 0 small enough, the Eulerian bifurca-
tion is accompanied by Lagrangian iransport of particles
which occurs belween the inlerior and the exlerior of
the region which is encircled by the eddy at t = .. If
0< 2y < ... < z9; < €T are the local extremum points
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of the connecled eddy arca function A(z), then up to an
error of order O(¢), the net Lagrangian flur associated
with this transport is given by the formula

Flux = ¥, |A(2z2:) — A{z2:21)] -

Proof: Using the notation z = et, the assumptions of
the theorem imply that Vi(p.(z),2) =0, and
%d)(m(.’:),z) is indefinite. This in turn implies the
existence of a one-dimensional, normally hyperbolic in-
variant mantfold Py for the flow in the ¢ = 0 limit. Since
a continuous Eulerian bilurcation always implies the ex-
istence of homochinic or heteroclinic loops attached to
pe(2), Py must have a two-dimensional homoclinic or
heteroclinic manifold T'y attached to it. For stmplicity,
we assume that [y 1s a homoclinic manifold, since the
heteroclinic case can be dealt with similarly. In view
of our discussion above, Py perturbs into a nearby slow
periodic orbit P, for small ¢ > 0, which admits stable
and unstable manifolds. For any z € [0,7T), the inter-
section of P, W*(P,)}, and W"({P,) with any Poincaré
section (Z} = {(z,, 2) | z = z} will yield a hyperbolic
fixed point with stable and unstable manifold for the
Poincaré map based at X{Z). (The hyperbolicity of the
fixed point follows form the assumption that the Eule-
rian bifurcation is continuous and nondegenerate.) If the
Melnikov has a transverse zerc at z = zg, then the stable
and unstable manifolds of the fixed point will intersect
transversely and hence Lagrangian transport from the
interior of To N I(Z) to its exterlor and vice versa. In
fact, by the area conservation of the Poincaré map. if
W?*(P)NI(2) and W¥(P. )N E(Z) do not coincide, then
they must intersect topologically transversely, hence the
homoclinic tangle is still developed. In other words. if
M(z) is not identically zero, it will always have at east
one topologically transverse zero, and Lagrangian trans-
port takes place. Therefore, to prove the first statement
of the theorem, we only have to argue that M(z) is not
identically zero.

Suppose that the Eulerian bifurcation occurs through
eddy detachment. Then for any ¢ > ¢., the detaching
eddy is a closed streamline which is encircled by the
homoclinic loop I'g i E(et). Therefore, if the area of the
eddy at some time f = t* is greater than the area of
the homoclinic loop Ty N X(et,) (i.e., the area enclosed
by the eddy at the time of its detachment), then we
must necessarily have A(et*) > A(et.) (see Fig. 6a). In
other words, we have A(z*} > A(z.), hence A(z) is not
a constant function. Since the function A(z) is at least
C?, the mean value theorem implies that dA(Z)/dz # 0
for some # € (2., z"). Then we conclude from formuia
(6) that M{z) 1s not identically zero, hence Lagrangian
particle transport takes place. A similar argument yields
the same result for the case of eddy reattachment (see
Fig. 6b). Finally, the statement about the Lagranglan
flux through the eddy boundary follows directly from
formula (8). U
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z
connected eddy area rearfnchifg eddy area
at time !, Y at time ¢
L x . -
=€t
Z=EL,

detached eddy area connected eddy area
at time ¢* af time £,
a) b)

Fig. 8. The geometry behind the proof of the eddy-growth crite-
rion.

Loosely speaking, the above theorem states the fol-
lowing:

In time-periodic, adiabatic flows, growing de-
tached eddies and shrinking reattaching eddies
indicate Lagrangian particle transport in direc-
tions transverse to the boundaries of the eddies.
The flux associated with this transport is given
by the difference in eddy areas taken at two ad-
Jacent extrema of the connected eddy-area func-
tion A(et).

It is interesting to note that the shrinkage and growth
conditions for the eddy area cannot be relaxed in The-
orem 3.1. In other words, if one follows a distinguished
set of streamlines, the appearance of an eddy in an Eu-
lerian time series does not immediately imply mixing of
Lagrangian particles across seperatrices.

To see this, consider the following adiabatic stream-
function

Y(z,y,t) = (%y? _ %;1:3 + a:) (2 + sinet). (9)

The set of streamlines for this function is clearly con-
stant in time, but the value of ¢ changes on these stream-
lines periodically. An easy calculation gives that for
Pe = (zc,¥.) = (1,0), and for any ¢, € R,

Vip(ze, ye, te) = 0,

and

. _ 6¢(Pcatc) B*
E(pcﬂtc) — _—at—azayw(pcatC)

-2 0
(2+cosetc)( 0 1).

Since E(p.,t.) is indefinite for all ¢,, we conclude that an
Eulerian bifurcation occurs for any time t = t. through
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Fig. 7. Periodic eddy detachment in the example.

the streamline that contains the point p.. (We cannot
have an exchange of streamlines since any big enough,
fixed ball B containing the point p, will be intersected
in precisely two points by the streamline containing p.
for any time t.. This follows from the fact that the set of
streamlines is fixed and all non-closed streamlines have
this intersection property.) The Eulerian bifurcation is
manifested by periodic eddy detachment and reattach-
ment (see Fig. 7). The corresponding velocity field is
given by

-—%%’ = —(2 +sin et}y,
y = %—:? = (2 +sinet)(1 — z%).

Introducing the new time 7 = (2t — (1/¢) cos et), we ob-
tain that Lagrangian particle motions ocbey the equation

g = -y, (10)
¥y = 1-2z%

where the prime denotes differentiation with respect to
7. This is a one-degree-of-freedom Hamiltonian system,
and hence no Lagrangian mizing can occur in the flow
governed by the streamfunction (9).

This flow satisfies all the assumptions of Theorem 3.1
ezcepl the condition on the change of the eddy area.
The reason is that after rescaling time, the scaled sys-
tem (10) has no explicit time dependence, hence M(z) =
dA(z}/dz = 0 must hold by integrability. As a result,
the detached or reattaching eddy (depending on the sign
of €} is always confined to the interior of the region
enclosed by the single homoclinic orbit of (10), which
bounds the eddy at the time of detachment or reattach-
ment. Consequently, the area of the detaching eddy
cannot grow, ot the area of the reattaching eddy can-
not shrink, so the assumptions of Theorem 3.1 are not
satisfied.
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4 Mixing in eddy-jet interactions

In this section we study Lagrangian mixing and Eulerian
bifurcations in a particular oceanographic flow, namely
the kinematic eddy—jet interaction model proposed by
Dutkiewicz and Paldor (1994). This model is relatively
simple, but appears to capture several important fea-
tures of the interaction of a Gulf Stream-like jet with an
eddy. One of these features found numerically by Dut-
kiewicz and Paldor is the fact that the presence of an
eddy greatly enhances the mixing of Lagrangian parti-
cles in the jet. We will explain this numerical observa-
tion in terms of Lagrangian transport, whose existence
we infer from Eulerian observations. This demonstrates
the use of the eddy-growth criterion, as well as that of
the classification theorem of Eulerian bifurcations, that
we proved in Section 2.

The meodel flow field is given by the linear superposi-
tion of a meandering jet and a simple Gaussian-shaped
eddy representing a Gulf Stream ring. The correspond-
ing streamfunction is

1:[" = ¢jet + ﬂbeddy;

where

Yiet(2, ¢, 1) = J tanh {% (y — Asinf{k(z — ct)])} ,

'ﬂbeddy(rr yat) =
E exp (—2Tlr2. f[(z —pe)? + (v - Py)z]) .(11)

The parameters in the problem are the maximum jet
velocity J, the jet width L, the meander speed ¢, the
meander wavelength k, the meander amplitude A, the
eddy size o, and the eddy center coordinates (u., py).
The parameters are chosen to match observations of the
Gulf Stream and its eddy field. In particular, we have
the parameter values

J=45km?fmin, L=050km, c¢=0.007km/min,

E=00157T I/km, A=60km, o°=625km?

(pe) sty) = (400 km, —100 km).

We note that the ratio of the propagation speed of the
jet meander to typical particle speeds in the interior of
the jet is small. As a result, we can define the adiabatic
parameter

Umeander | 10 km/dﬂy

= = = 0.1 12
‘ Uparticle 150(:m/s (0 ) ( )

which, while not infinitesimally small, will turn out to
be adequate for relating Eulerian bifurcations to La-
grangian transport via the eddy growth criterion.
First, we want to determine the time {, and the lo-
cation p. = (2, y) of continuous Eulerian bifurcations.
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To verify the conditions of Theorem 2.1, we have to find
the zeros of the equation Vi(x., ¥e,t:) = 0, and study
the eigenvalue configuration of the matrix E{p.({.),t.).
Since the former equation is transcendental in this ex-
ample, we can only find the curve of zeros p.({.) nu-
merically. This amounts to selecting a time slice t,
and searching for a fixed point {z.,y.) of the time in-
dependent flow generated by streamfunction (2, y,t.).
From (4) and (11) we can compute the matrix F(p,,!.)
and its eigenvalues numerically. The Eulerian bifur-
cation curves p.(t.) and the definiteness properties of
E(pc(t:),t.) along the curves are shown in Fig. 8 for two
different parameter values. These parameter values are
taken to illustrate the two qualitatively different eddy-
Jet interactions: the strong and the weak eddy case.

For the strong eddy case, a pair of critical curves
pe(t.) exists for all values of ¢.. The larger curve traces
the hyperbolic saddle point which indicates eddy reat-
tachment initially as the jet meander approaches the
eddy, then eddy detachment as the meander moves away.
The smaller curve tracks the continuous eddy creation/-
disappearance that occurs at the center of the homo-
clinic loop.

In the weak eddy case, there are no critical points in
any of the time slices initially. At some point, as the jet
meander moves far enough away from the eddy center, a
patr of critical points are created, one corresponding to
the birth of a saddle, the other to a center. These two
points then move on a curve in the phase plane until
the next jet meander approaches and the two critical
points coalesce in a Harmiltonian saddle-node bifurcation
for the Hamiltonian ¢(x, y;t.). In the strong eddy case,
a stagnation point p. exists for all times, while in the
weak eddy case the curve p.(t.) i1s only defined for a
range of £, values which is smaller than the period of
the streamfunction.

In conclusion, Fig. 8 shows that centinuous Fulerian
bifurcations occur for all times i, in the strong eddy case,
and for a range of times t. in the weak eddy case. In
Figs. 9 and 10 we show contour plots of the combined
streamfunction ¢ at three different times for £ = 4.5
(strong eddy) and for E = 3.0 (weak eddy).

For the strong eddy case, a closed, homoclinic loop in
the dynamics generated by the Hamiltonian ¥{z,y, fo)
exists for all times g in the period, even when the eddy
and the jet are at the point of closest proximity. In
the weak eddy case, the closed sireamline loop, i.e., the
homoclinic orbit of 4(z,y,1y) disappears for times g
when the jet meander approaches the eddy too closely
(see Fig. 10).

Having obtained a fairly complete understanding of
the Eulerian properties of the eddy-jet interaction model.
we now would like to use our “Eulerian observations” to
study Lagrangian particle transport in the problem. To
apply our eddy-growth criterion (Theorem 3.1), we note
that in both the strong and the weak eddy cases, de-
taching eddies grow and reattaching eddies shrink. This



Haller and Poje: Eddy growth and mixing

-2

-10

Frozen Time Criical Point - Stiong Eddy

Frozen Time Critical Point - Strong Eddy

e

2 . n 1
-&&0 an 200 30 L] 410 20 X 40

Frozen Time Critical Poinl - Weak Eddy

Frozen Yima Critical Poind - Wiaak Eddy

-agi] 370 380 20 400 Lil o 40 40
X anis

23

Fig. 8. Eulerian bifurcation curves for both strong and weak eddy parameters. In the figures X indicates that E(p.,t.) is indefinite, and
hence eddy detachment or reattachment occurs at pc. Similarly, o indicates that E(pe,t.) is definite, thus eddy creation or disappearance

takes place.
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Fig. 9. Streamfunction contours for the strong-eddy case. Snap- Fig. 10. Streamfunction contours for the weak-eddy case. Snap-
shots taken at times ¢t = 0, top, t = 0.16T, middle; t = 0.32T, shots taken at times t = 0 , top, t = 0.16T, middle; ¢t = 0.327.

bottom. Spatial coordinates in km, contour spacing 0.5km? /min. bottom. Spatial coordinates in km, contour spacing 0.5km? fmin.
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Fig. 11. Lagrangian transport in the eddy-jet interaction model.

can be seen from the Eulerian slices given in Figs. 9
and 10. Therefore, by Theorem 3.1, for € > 0 suffi-
ciently small, Lagrangian {ransport of particles occurs
in the sirong eddy case in directions transverse {o the
eddy boundaries. We cannot reach a similar conclusion
for the weak eddy case, since we do not have the ex-
istence of a saddle-type stagnation point for all times,
hence the conditions of Theorem 3.1 are not satisfied.

Since our adiabatic parameter € is not infinitesimally
small, a numerical verification of Lagrangian transport
is needed for the physically meaningful value of € given
in (12). In order to actually demonstrate Lagrangian
transport in the strong eddy case, we construct a Poincaré
map of the corresponding time-periodic flow. We gen-
erate this map by strobing at the time when the fixed
time homoclinic loop is the largest. Fixing a time slice
i = ¢, and using the techniques described in Miller et al.
(1997), we can locate the hyperbolic fixed point p, of the
Poincaré map based at { = ¢,. By elementary perturba-
tion theory, the fixed point p, must be @(¢)-close to the
stagnation point p.(1.) with local stable and unstable
manifolds Wy, (pc) and W% (p.). These local manifolds
are C' O(e)-close to the homoclinic loop of the Hamil-
tonian ¥(z,y,t.). Using software tools developed by
Miller et al. {1997), we can find the global stable and
unstable manifolds W?*(p,) and W*{p.), as shown in Fig.
11.

Note that W*(p) and W"(p) intersect each other trans-
versely, which lmplies the existence of Lagrangian par-
ticle transport via the lobes of the resulting homoclinic
tangle. To illustrate the mixing induced by the presence
of lobes, we seeded the primary lobe with a rectangle of
initial conditions and iterated the Poincaré map in for-
ward time. Only those particles initially located in the
area marked Al (see Fig. 11) are mapped into the re-
circulating eddy region in a single iterate. Similarly,
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Fig. 12. Area of the bounded eddy region as a function of time.
Areas given in km?, time in fractions of a period.

particles originating in region B1, inside the eddy, are
swept into the jet in one iteration of the map.

We note that the lobes computed for this case have
the characteristic features that are typical of adiabatic
Hamiltonian systems ( Kaper and Wiggins (1991), Kaper
and Kovagi¢ (1994), ete.). In particular, the lobe areas
are (1) quantities while their widths are O(¢), which
results in highly elongated and twisted mixing regions.
The physical implications of adiabaticity in this class of
oceanographic flows will be treated in detail elsewhere.

In order to directly estimate the Lagrangian parti-
cle flux between the eddy and the jet, we first calcu-
late the area of the fixed time, bounding homoclinic or-
bit. The resulting areas for the strong eddy case are
shown in Fig. 12 over the course of a single time period,
t € (0,T = 2r/(kc)). We note, in this case where we are
dealing with the streamfunction directly, the bounding
curve is easily found. Once the location of the fixed time
stagnation point is known, the homochinic orbit is eas-
ily constructed by initializing a trajectory nearby and
following the closed loop back to the initial conditions.
For more general situations, the location of the Eulerian
bifurcation point provides a critical value for the Eule-
rian field of interest. One can then examine the level
curves at this critical value to determine the area of the
bounded region.

The area curve for the strong eddy case shows two
extrema and thus, from Eq. (7), two zeros of the Mel-
nikov function Af. The time derivative, measuring the
instantaneous particle flux, is plotted in Fig. 13. There
is a short period of time initially, where the flux is neg-
ative; particles in the eddy are transported into the jet.
Following this, the eddy grows, entraining jet fluid until,
at time ¢t = (.77, the eddy reaches a maximum size and
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there is a rapid changeover in the direction of particle
transport. The cycle then repeats itself periodically.

The dimensional value of the flux depends on the
choice of meander speed ¢. For the values given above,
the period is,

27

Figure 12 shows the total growth in eddy area is ap-
proximately 10, 000 square kilometers in a time of order
T/2. Assuming the kinematic model applies in a 500
meter deep surface layer, the average volume flux into
the eddy over the half cycle is of order 2.8 Sv, agreeing
reasonably well with Gulf Stream observations.

5 Conclusions

In this paper we developed a geometric concept of Eu-
lerian bifurcations, i.e., qualitative changes in extended
structures in two-dimensional, time dependent flows. Such
structures are typically defined through the streamfunct-
ion or some other passive scalar associated with the flow.
We define an Eulerian bifurcation as a change in the
topology of these structures. Such a change can only oc-
cur at stagnation points of the flow, i.e., at points p, =
(z¢, ¥c) and at some time ¢, such that Vy(z., y.,t.) = 0.
Our classification theorem (Theorem 2.1) states that in
the generic case, an Eulerian bifurcation manifests itself
in eddy creation, disappearance, detachment, or reat-
tachment. These cases can be determined completely
from the eigenvalue configuration of the matrix E(p., t.)
defined in (4). We note that recent work has shown the
existence of a streamfunction in non-divergent, three
dimensional flows {see Mezi¢ and Wiggins (1994) and
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Haller and Mezi¢ (1996)). Although more difficult, a
similar classification of the Eulerian bifurcations would
prove a useful tool for understanding the much richer
3D topology and mixing processes.

In the case of adiabatic flows with periodic time de-
pendence, we established a direct correspondence be-
tween Eulerian bifurcations and Lagrangian transport.
The eddy-growth criterion (Theorem 3.1) guarantees the
existence of Lagrangian transport based on observations
of eddies and their deformation. This criterion gives an
efficient visual tool to study nearly pericdic experimen-
tal data sets. If the experimental flow is sufficiently
close to a periodic field and satisfies the eddy-growth
criterion, then the periodic limit will also satisfy the
criterion, and hence exhibit Lagrangian transport. But
this transport is due to the (topologically) transverse in-
tersection of stable and unstable manifolds, therefore it
persists for the nearby aperiodic flow studied originally.

The eddy-growth criterion is equally useful for nearly-
periodic, numerically generated vector fields with slow
time dependence. A dynamical systems-type analysis
of such problems is very difficult, since even few itera-
tions of an approximate Poincaré map require the solu-
tion of the vector field on times scales of order O(1/¢).
Since the vector field is already just an approximation
of the true velocity field, the long-term integration of
initial conditions leads to error accumulation. These
errors are particularly undesirable in the computation
of adiabatic lobes, which exhibit very intense stretching
and folding. For all these reasons, the Eulerian obser-
vations of eddy dynamics required for the application
of the eddy-growth criterion are substantially easier to
obtain than long-time Lagrangian information derived
from the direct integration of the velocity field.

The main results were demonstrated in a study of an
eddy-jet interaction model of Dutkiewicz and Paldor.
Using the corresponding streamfunction, the location,
time, and type of Eulerian bifurcations in the problem
were predicted. We also showed that the conditions of
the eddy-growth criterion are satisfied for the case of
a strong eddy, and hence Lagrangian transport occurs
in the problem in the case when the velocity of the jet
meander is sufficiently small compared to typical parti-
cle speeds in the jet. We verified the existence of La-
grangian transport numerically for a fixed set of param-
eter values by locating stable and unstable manifolds for
the corresponding Poincaré map.

An interesting open question is the treatment of “tran-
sient” stagnation points, i.¢., stagnation points that only
exist for a limited amount of time, just like those in the
weak eddy case that we considered in Section 4. Such
stagnation points do not necessarily imply the existence
of a hyperbolic fixed point for the period-7" map, yet
they seem to induce substantial mixing and transient
hyperbolic behavior. The organization of particle tra-
Jectories by transient hyperbolicity is an established fea-
ture of particle dispersion in two-dimensional turbulence
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(Provenzale et al. {1995) Elhmaidi et al. (1993)). Such
flows are dominated by the presence of coherent struc-
tures which, while highly aperiodic in time, are adiabatic
in nature. The the organizing vortices evolve on time
scales slower than the particle dynamics. The structures
are long lived, existing for many eddy turnover times.

To approach the aperiodic, ‘transient eddy’ case, one
needs new and more sophisticated mathematical meth-
ods. In a companion paper Haller and Poje (1997), we
lay the mathematical groundwork for a finite time mix-
ing theory. Similar to the approach of the piesent paper,
we identify potential mixing regions by finding transient
stagnation points of the fixed time, Eulerian flow field,
We then give a set of explicit conditions under which
the full flow admits nearby hyperbolic trajectories. The
stable and unstable manifolds of such solutions are only
unique up to exponentially small errors, which, however,
1s more than sufficient in the analysis of experimental or
numerical data sets. Unlike earlier mixing analyses, this
theory does not rely on the presence of infinitesimally
small perturbation parameters, and hence can be ap-
plied directly to observational data sets.
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