Nonlinear Processes in Geophysics (1997) 4: 251-254

Nonlinear Processes
in Geophysics

© Eurapean Geaphysical Society 1997

Evidence of structured Brownian dynamics from temperature

time series analysis
A. Pasini, V. Pelino and S, Potesta

Servizio Meteorologico dell’ Aeronautica, 2°CMR - Aeroporto "De Bemardi”, Via de Pratica di Mare, I-00040 Pratica di Mare (Roma), Italy

Received: 10 June 1997 - Accepted: 9 June 1998

Abstract. An analysis of time series of monthly mean
temperatures ranging from 1895 to 1989 is performed
through application of Singular Spectrum Analysis (SSA)
to data of several places in the USA. A common dynamics
in the reconstructed spaces is obtained, with the evidence
of a non-trivial and structured coupling of two Brownian
motions, resembling the so-called Lévy flights. The idea
that these two correlated functions are related to the zonal
and eddy components of the atmospheric motions is
suggested.

1 Introduction

Analysis of time series in geo-sciences has been performed
since the birth of the so-called chaos theory (Takens, 1981)
with the aim of embedding the dynamics of random-like
behaviours occurring in nature in a low-dimensional state
space. A strong conceptual objection fto these
reconstruction techniques was soon given by the shortness
of the records available, which could invalidate any
conjecture on the attractor properties (Smith, 1988; Ruelle,
1990). There is still an open discussion on this subject
(Nerenberg and Essex, 1990; Tsonis et al., 1994) and some
authors have found techniques useful for the treatment of
short and noisy time series, like Singular Spectrum
Analysis (SSA) (Broomhead and King, 1986; Vautard and
Ghil, 1989; Vautard et al., 1992).

Moreover, the usually short meteo-climatic records
exhibit typically, besides more or less broad peaks, a large
‘red-noise component in their power spectra (Ghil and
Childress, 1987; Cuomo et al., 1994). This fact seems to
exclude the hypothesis of low-dimensional chaos and
supports the conjecture of leading Markov dynamics in
atmospheric processes, as already suggested about twenty
years ago by Leith (1973; 1978) and Hasselmann (1976).
Here we apply SSA to time series of monthly mean
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temperatures ranging from 1895 through 1989, in
randomly selected places of the United States. Results
reveal, for all our case-studies, a common dynamics in the
reconstructed spaces, showing a non-trivial and structured
coupling of two Brownian motions, resembling the so-
cailed Lévy flights, today emerging in many areas of
physics, such as statistical mechanics and turbulence theory
(Mentroll and Shlesinger, 1984; Sagdeev and Zaslavsky,
1992; Shlesinger et al, 1995). Finally, we present
preliminar  suggestions about the meteo-climatic
interpretation of this evidence.

2 The analysis

We analysed the monthly mean temperature time series of
different places of the United States (North Coast Drainage
of California, Northeast Georgia, Coastal Maine and
Southeast Minnesota) from NOAA/NCDC archives as
reported in Masters (1995), in order to study their course
and possibly to find a dynamics which could explain the
inter-annual variability of climate. Qur choice was leaded
by the opportunity of having spatially distributed records
of the same time-length. For reasons of space, in this letter
we comment results and show figures related uniquely to
one case-study (California). Anyway, the final results
appear to be the same for all our case-studies.

By means of SSA, a method adopting the Principal
Component Analysis (Jolliffe, 1986), one can find a set of
orthogonal directions for a cloud of points, that accounts as
much as possible for the data’s variance. For a time series,
this is a way for discriminating between information and
noise in the time-delayed space. This method also resolves
the problem of choosing the optimum time delay in the
reconstruction techniques. The window width chosen in
applying SSA was t,, = 120 months. This is an acceptable
time-range if one considers that anomalies in atmospheric

flow patterns, like blocking events, affects climate on the
time scales of months and seasons. Moreover, from an
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estimate of global climatic variability on all time scales, the
reconstructed power spectrum shows a gap between the
range of Kyears, and the annual and synoptic periods
(Mitchell, 1976).

The ordered set of eigenvalues of the covariance matrix
is composed of a couple of equal eigenvalues, preceeded
by a higher one for coastal regions and followed by a lower
one for Minnesota, over a platequ of almost vanishing
components of the spectrum. This couple is an evidence of
a periodical activity (Vautard et al,, 1992) and is easily
interpreted as the signature of the annual cycle. This brings
us to consider the 3D space reconstructed by the
autovectors, associated with the eigenvalues above, as the
state space in which the maximum of information about the
dynamics underlying the time series is given.
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Fig.1 Power spectra of the first three eigenfunclions obtained from the
time series. The lowest graph, related to the € coordinate, shows peaks of
periodicity; the other two (associated with the r and z components) show
only red noise.

The first eigenfunction f;, associated with the single
high eigenvalue, has been revealed to be a Brownian
function, as will be shown later. A plot of the motion in the
reconstructed space shows helicoidal dynamics with an
orbital period of 12 time-steps and whose pitch is driven by
J; - The symmetry found suggests to study the dynamics in
a cylindrical coordinate system (0,»,z) with origin in the
centre of the reconstructed cloud:
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where f,(f) are the eigenfunctions of the covariance

matrix. This simple geometrical transformation leads to the
confinement of the orbital cycle to the 8 coordinate,
leaving the non-annual dynamics to the r-z plane. This is
evident from Fig.1, where a nice theorem of SSA, stating
that the power spectrum of a time series can be
decomposed in the sum of the eigenfunction power spectra
(Vautard et al., 1992), is applied. Moreover, the spectrum
of the r-component has the same behaviour of the z-
component, inducing therefore the idea of the presence of a
further Brownian motion in the dynamics of our system. A
proof of this is given performing a log-log plot of power
spectrum vs. frequency for both the a-periodic components.
The spectral density S(m) scales with frequency ®
according to a power law of the kind o, with 1.9 < o <
2.1 for the various time series. This range of values implies
the possibility of having both pure Brownian motions (¢ =
2) or fractional Brownian motions (o # 2) (Falconer,
1990). From the plot of the above functions, shown in
Fig.2, there seem to appear recurrent opposite local trends
in the Brownian walks; therefore it is interesting to
investigate the dynamics in the r-z plane.
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Fig.2. Time evolution of the eigenfunctions representing the radius r(t)
{black line} and the shifted pitch z(t) (gray line) of the helicoidal motion
in the reconstructed space. Here z(t) and r(t) are shifted in order to start
from a common point.

Generally speaking, a 2D dynamics driven by two
independent Brownian functions shows an isotropic walk
without any kind of geometrical structure. In our case,
instead, the composition of r- and z-components gives rise
to a random walk along preferred directions (Fig.3), typical
of the so-called Lévy flights. In fact, one can recognize in
the last figure a motion along straight lines interrupted by
jumps. Furthermore, the slope of the straight lines supports
the idea of a frequent anti-correlation between r and z local
trends. A more evident verification of the confinement of
the motion directions is given in Fig.4, where a cone of not
allowed directions is clearly visible.
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Fig.3 Coupling of the two Brownian motions in the r-z plane.

z{n+1) - z{n)

r{n+1} - r(n}

Fig.4 Ar-Az diagram of the displacement directions. The cone structure is
a clear evidence of the anisotropy of the walk in comparison with a 2D

isotropic uncomelated Brownian motion.

3 Meteorological considerations

At this point, a brief meteorological discussion is required
in order to give a possible explanation to the dynamics
found from the time series analysed. It is well known that
monthly mean temperatures at mid-fatitudes, such as other
meteorological variables, depend, apart from the annual
cycle and the geographical position, also from the so-called
index cycle, i.e. the alternative occurrence of zonal (high
index) and wavy (low index) flow structures in the
planetary waves (Wiin-Nielsen and Chen, 1993). For
example, a low index circulation, classical of blocking
. phenomena, is responsible for temperature anomalies due
to persistent weather conditions for several days. The sum
of zonal flow energy and its deviation (eddy energy) is
proved to be constant (Wiin-Nielsen and Chen, 1993).
There are, however, exchanges between these two
components, as shown by Lorenz (1955). These transfer
processes are responsible for the a-periodic component of
the monthly mean temperatures. For example, a toy-model
for monthly mean temperature evolution can be worked out
from the following equation:
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dT/dt = F(2, n{t), E(1)), 2)

where  is the annual frequency, m and & are two
correlated functions related to the zonal and eddy flow
components, respectively.

The hypothesis suggested by our work is that the two
functions above could be thought of as correlated
Brownian ones. Furthermore, it should imply that a
fingerprint of chaos, whose existence has not been
underlined in time-series studies and in low-order non-
linear models (Wiin-Nielsen, 1994), is hidden in the red-
noise component of the spectra, recurrent in climatic time
series, as an interaction of distinct Brownian walks. Lévy
flights, for example, are the solution of the equation of
motion of a particle embedded in a 2D conservative
periodic potential V(x,y), giving rise to Hamiltonian chaos
(Klafter and Zumofen, 1994). Therefore, the dynamics
found in our reconstructed state space could be justified by
assuming the B-component as the annual orbital variable,
and the r and z eigenfunctions of eqs.(1) as the n and &
Brownian functions responsible for the quasi-periodic
behaviours of averaged states of the atmosphere, well
represented by our original time series.

4 Conclusions

In conclusion, the red-noise component of the analysed
temperature records has revealed a random motion in the
reconstructed space, but it has been pointed out that the
randomness found shows defined structures, which can be
thought as determined by motion in a periodic potential
similar to those typical of Lévy-flight processes.

Obviously, further work has to be done, but this result
could give new ideas on the study of the problem of meteo-
climatic predictability, because of the analogy with other
processes studied in physics and the existence of
techniques already available in the literature.
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