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Abstract. By using a Hamiltonian method, non-lincar
three-wave interaction in a class of systems related to the
shallow water model is considered and a general coupling
coefficient is presented. In the special case where two
inertial waves and one Rossby wave inleract resonantly, it
is found that even a very small shear ol the background
velocity can be important in the interaction process. The
stability of the system is considered by using a pseudo-
energy mcthod. Some implications for the dynamics of
atmospheric flows are poinled out.

1. Introduction

Ohservations of large scale atmospheric and ocean motions
have shown that the energy spectra have a peak close to
the Coriolis frequency f=20sin0 where £ is the
rotation frequency of the planet and @ is the latitude (see
e.g. the review by Van Delden 1992). Since the
frequencies of weakly nonlinear inertial waves in a
shallow water system, which is a model often used in
geophysics, are close to the frequency f (e.g. Petviashvili
and Pokhotelov 1992) it would be of interest to know how
these inertial waves couple with themselves and with other
waves. This coupling could for example be a mechanism
of energy transfer between low and high-frequency waves.
The most simple nonlinear interaction occurs when three
waves interact resonantly, i.e. when the frequencies of the
waves  satisfy  the frequency matching condition
o+, +w, =0 (e.g. Weiland and Wilhelmsson 1977,

Craik 1985), Self-interaction of three inertial waves is then
out of question since the resonance condilion above cannot
be satisfied. Thus we have to focus attention on the
coupling between a combinaiion of inertial waves and
some other types of waves. One example of such a
combination, which we will consider in this paper, is the
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resonant interaction between two inertial waves and one
Rossby wave (which has a frequency much less than f). We
consequently deduce the equations governing the evolution
of these three interacting waves. The mathematical
properties of such equations have been studied extensively
{e.g. Weiland and Wilhelmsson 1977, Craik 1985) and arc
thus well known.

The equations of shallow water have a deep analogy with
those of drift vortices in magnetised plasmas (c.g. Nezlin
and Chernikov 1995; Horton and Ichikawa 1996). This
implies, for example, that one may use devices devoted 1o
hydrodynamic ecxperiments in order to get some
understanding of the equivalent phenomena in plasma
physics, and vice versa. The comumon way to analyse the
shallow-water equations is to reduce them, by the quasi-
geostrophic approximation, to the Charney equation or to
the quasi-geostrophic potential vorticity equation (Horton
and Ichikawa 1996). However, the importance of going
beyond this approximation to include further aspects of the
full nonlinear shallow-water equations has been pointed
out by Nezlin and Chernikov (1995). The latter authors
have shown that some of the interesting dynamics, e.g. the
existence of monopolar solutions, disappears in the
standard approximation schemes and that it thus is
necessary to study a generalised Charney equation. Since,
in this paper, we arc concerned with the interaction
properties of inertial waves we cannot adopt the quasi-
geostrophic approximation because this approximation
filters out the inertial waves (e.g. Salmon 1988,
Petviashvili and Pokhotelov 1992), and thus we will not
use the Charney equation. It should be noticed, however,
that other kinds of three-wave interactions can be
described by the Charney equations.

The canonical Hamiltonian method (Zakharov 1971,
1984) has been a very fruitful way to analyse the tluid
dypamics. Using that method it can, however, he dillicult
(© f{ind the canonical variables and to interprel these
variables physically. If, for example, we want Lo use the
non-canonical variables velocity, density and entropy to
describe an ordinary fluid, we cannot apply the canonical
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method (Morrison 1998). In order to use the physical
variables of a system we thus need to consider a non-
canonical approach. In this paper we shall analyse the full
shallow-water equations by such a npon-canonical
Hamiltonian perturbation method. This has previously
been done for both plasma and iluid systems (Axelsson

1998; Larsson 1996,1998a,b). Thus the method yields the
governing equalions of a non-linear resonant three-wave
interaction process where the coupling coefficients
between the waves are expressed explicitly. The method
also provides us with conserved quantities that can be used
in a slabilily-analysis corresponding to the Lyapunov
stability theory, i.c. we can obtain conditions on an
unperturbed state such (hat any perturbation remains in
the neighbourhood of the unperturbed state. The
unperturbed state considered in this paper is a zonal (low
(the background velocity is parallel to the equator and
depends only on the latitude). Such flows have for example
been observed by Voyager in Jupiters atmosphere and in
the monsoons of the Earth’s atmosphere (Petviashvili and
Pokhotelov 1992, Dowling 1995). In a zonal flow, or shear
flow, we have the possibility of negative energy modes
which can affect the stability of the system (Kelvin-
Helmholtz instability). The stability and flow properties in
case of a shear flow have previously been discussed for
many different systems (e.g. Craik 1985, Fabrikant and
Stepanyants 1998). In this paper we want to show how a
sheared background flow affects the non-linear resconant
three-wave interaction process and how one should choose
the background flow in order to avoid explosive
instabilities.

In section 2 the model equations are described. In section
3 we present them in a noncanonical Hamiltonian form
and give a definition of what we mean with a Hamiltonian
system. Section 4 is concerned with the nonlinear three-
wave interaction, and we deduce the explicit coupling
coefficients. In section 5 we present a stability criterion
obtained by the Hamiltonian method used in this paper.

2. The model equations

We will use a mathematical model which has the same
structure as that of a shallow water system. However, our
model contains a class of systems and the interpretation of
the variables depends on the choice of system. In the
examples below we have presented two different ways to
interpret the model equations. By using our approach we
will be able to obtain results for a class of systems
simultaneously, and it may also help us to see similarities
between apparently different systems. The model equations
are

dv=—v-Vv-VP+ fyxz (1)
and

9 H=—V.[Hv] @
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where the variable v typically represents a fluid velocity,
and H could be viewed as a density-like variable, or the
height of the fluid. A specific model is obtained from (1)
and (2) by a choice of internal energy U=U{H.x,y) and a
Coriolis-like function f=f(x,y). The generalised pressure
P=P(H,x,y), appearing in (l), is then defined as
P=d,U. Two examples below will show a specific
interpretation of (1) and (2):

Example |

By choosing U=Y¥gH* and H=H,(x)+h(x,»0) .
where g is a constant, we obtain the ordinary shallow
water system where P=gH is the pressure and (=f(x) is the
Coriolis parameter. Those equations describe a fluid with
an undisturbed layer with depth H,(x) and a perturbed
tayer with depth k(x,y.t) where H, 5. The fluid
velocity v = v{(x, y) is in the x-y plane and the system is
thus quasi-two-dimensional.

Example 2
As another example we choose

=1 ]n{iJ] y and get p_lln[i}.
M H, M H,

Here T/M is the temperature to mass ratio. By letling
vov, f—ow,,H—>#a and H —n, the system now
describes a nonuniform collisionless electron-ion plasina
where Vv, is the ion fluid velocity, @, is the ion

of?

gyrofrequency and the ion density n is described by the
Boltzman distribution. We assume quasi-neutrality here.

In the rest of the paper a general pressure P is assumed if
nol stated othcrwisc.

3. The Hamiltonian method

Many non-dissipative systems, e.g. ideal fluids, MHD-
fluids and Vlasov systems in plasmas, have been shown to
admit a Hamiltonian formulation. Thus we will, in this
paper, use a Hamiltonian approach.

The systern (1) and (2) can be shown to be Hamiltonian in
the sense that the equations of motion can be written as

o

(3)
ou

ou=Xu)=J,

where # is the Hamiltonian function and J is any operator
that satisfies

a) the anti-symmetry condition

(a, J“b> = _(Jua,b)

and
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b} the Jacobi-like identity

8 )
<.]ua,g<b,.fu(,’)>+<an,a<c,.]ua>>
+<J c i(a J b>>= 0
R TR

where (,) stands for the inner product and a,b and ¢ are
arbitrary operator arguments.

When we put (1) and (2} in the form (3) we obtain the
following expressions

u:{v]! ’ =(—H"(ﬁ+va)>< fv}

H v 0

1
H = J'(EH'V2 + U]a’xdy

H
and S_H: 1 Zv
6” 5‘1’ +P

where we have chosen the variables ¥ and H to be our
state variables and the operator J to satisfy the conditions
above. It should here be stressed (hat the operator J, does
not involve the pressure P. Since the whole Hamiltonian
formulation is based on the structure of J, we thus can be

sure that changing the pressure model will not affect the
Hamiltonian structure of the system. We have also delined
the inner product as

{a,b)y= J(a -b+ a,b, )dxdy whete

a= a and b= b .
a, b,

Since our approach in this paper is to consider a
Hamiltonian perturbation method we need to introduce the
definitions of the perturbed objects. Let us thus iniroduce
the following Taylor expansions of X, J and P

X(u, +8u) = X))+ X 8u+ 1 X2 (Bu, du)+...
n 2! ] (4)

Jyale = DG+ T @0 4T (BB

P(H,+h)= P(H))+ P" () + % PO (b, ...

where u,, representing the unperturbed state, is a solution
of the equations of motion, i.e. d,u, = X(y,). One explicit
solution is u, =(v,, H,) where H (x) is an arbitrary
function and v, is the stationary sheared background
velocity v, = v, (x)§ determined from the unperturbed
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equation VP(H,)= f(x)v,(x)xz. Thus by specifying
P=P(H,). H,(x) and f(x) we determine the background
flow v, = v, (x)¥.

The equation of motion for a perturbation obtained from
(1), (2) and (4} is

9,80 = X\3u-+ 2 X (8,60 + X (BB ..

where only the first two terms are needed in this paper

g | V0 Va-a-Vv,—-VPa)+ faxz
o -V -(H,a)-v,-Va,

and

2)
N

-V {a,a)

From (4) we also obtain the operator

Rix v
J, = _}_}U—zx ~V | where R= f+vj.
-V 0

The operator J, is the Hamiltonian structure for the

linearisation of (3).

We consider dynamical accessible (or Hamiltonian)
perturbations from the background state, i.e. perturbations
that in principle may be obtained by a change in the
Hamiltonian (e.g. Morrison 1998, Larsson 1998b). The
Hamiltonian perturbations should to first order satisfy
(Larsson 1998b)

u=J 8§ (5)
d !é = _‘X;E(l,)*g (6)
3,8u = X!" (3u) e

where Xi 1" is defined (rom <a, Xf:f*”) = ( X:‘”* a, b>

and the generating function E_, is the conjugate-variable.
By operating with Ju“ on {6) and using (5) we note that
solutions of (6) give us solutions of (7} if (5) is satisfied.

4, Wave coupling

The non-linear coupling between thc waves can be an
efficient mechanism of transfering energy between
different parts of the energy spectrum. The procedure to
derive the coupling equations bclween three resonant
modes is rather standard (e.g Craik 1985). Let us first
briefly recapitulate it in order to introduce the reader to the
notations.
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Let us consider an interaction, with a stationary
background, between three linearly independent rcsonant

normal modes E_,H,E_, » and &C satisfying

3, =0, X(iy) =0, ®)
g _

X & =im 8, )

and the resonance condition

o, +0,+o =0 (10)

where j=a,b,c

The three waves are considered as Hamiltonian
perturbations of the background state, i.e.

=, (11)
which implies that X;(ql)”j = —ie 1.
By using the Ansatz

< .
~ =0T
u=u, +Z[Cj(t)u}.e i +c.c.] (12)
jca

where u; = it (x) €Xp{—i f) and writing
9,8u = X,"du + — 5] X”’(au ou) (13)

we obtain the equations describing the coupling between
the slowly varying amplitudes C (Larsson 1996)

d — V
—C, =-in,—C,C,
dr W,
d — 1% ‘
=G, =—iw, —C.C, (14)
di W,
— V
icc = —l(!)( e CaCb
dt W,
where W, = —<E_, XEE:) > (L5)
and

=—(€,. X (u,.4,)) (16)

and the overbar denotes the complex conjugate.

The coupling coefficient V is, from general theory
{Larsson 1998a,b), symmetric in the indices a, b and c.
The expression w;lcjl2 is what most authors denotc by
pseudo-encrgy or quasi-energy. We shall investigate it

more closelv in section 5 where also the stability is
discussed.
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4.1 General coupling coefficient

Since the coupling coefficients describes how strongly the
waves arc coupled to each other, it is important to derive
an explicit expression where the effect of for example a
sheared background flow could be seen. Thus, let us first
cxamine the coupling coefficient (16) and then at the end
of this section derive a dispersion relation.

Writing the perturbations as v = w(x)exp(i8) and
h=s(x)exp(iB) with 9=k y— oy, we thus introduce for

each variable the real quantities amplitude and phase. The
interaction is most efficient when the resonance condition

k)w + k}‘b + k_w- = 0 (17)

is satisfied, and wc assume that this is the case here
{(Weiland and Wilhelmsson 1977). By substituting (he
explicit cxpressions from section 3 into (16), using the
linear rclations (5)-(7) and assuming that all lelds
approach zero at infinity, we obtain, after some lengthy but
straightlorward algebra, the following general expression
for the coupling coefficient

V= J‘[hﬂvh v, F RV, v, Ry, v, |dxdy
bg reh
+IRz { ¢~ _&6 }dxdy+
a0, .0
H V‘, R XJk ' vX(‘k 1
+J OA 0 { r\" n) f;lc A 3 f:lb
, 0,0, o0,
(18)
k vk,
- "Xb -'\)b fm‘ T A eh dxd),
0,0, w.w,
R
+2_[ IH; v()v.mvxbvuax d):d.)
H()w m.’)
+j PPk, + b by + Ry
—P(hy b))~ PPk, b ) }dxdy
where we have used the compact notation
Gm:u EngVX(HUgL_ Xg")’ (19)
-8 % gav ’ (Hngh)
g =v, iy, 20)
J
vy = axvﬂ, fp= i'va XV, and
) k Vo @) 21}

J J

It follows from (19) that G** + G™ + G = 0.

The first and fourth term in (18) is obviously symmetric.
After some algebra it can. be shown that also the second
and third terms arc symmetric. Note that we have not yet
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specified which model we use, i.e. P is not defined.

Thus nexl step is therefore to specify our model. However,
it is instructive to first examine what types of waves we
have in our general model.

The coupling coefficient (18) can obviously be expressed
only in h(x,y) by using the relations

v= [idVPY (k) 22)
+ VPV (Y x - vid PO (3]
and
b= e (AHUV) (23)
w

which are obtained from (5) ,(7) and (17).

If we substitute (22) into (23) and usc (17) we will end vp
with a differential equation in s(x) which, if solved, gives
us the dispersion relation

s+ G +Gis=0 24
where
a Fy
G =d,.In AQH” ]+a I’J" S 9t )
w - L i P(;

y
G, = fk>al /YA P PR/ 4
@° - /R H.F
2 nr ax .P’ aP’
+a"P°+ ({a) °)+ik, y 9
E/ ik TR

and PY(hy = Ph

Thus, if s is constant, we note that G, =0 which in case of

shallow water ( P’ (k) = gh) implies that

c”o[]+rjkf—%+}} k g‘;’ﬂa In [ J;R] (25)
' D’

where r, = (gHD)”2

The dispersion relation (25) contains three different types
of waves

Rossby waves (@ << fi

& = ,L (26)

v
L+ k) +—2

{ f is the Rossby radius.

Incrtial waves (@ ~ f )

@ = 1+ kD) + v, @n
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Gravity waves (w > f):

aF = ikl + fv; (28)
Rossby waves, which are due to the inhomogenity of the
Coriolis frequency [, are analogous to drift waves in
plasmas. At much higher frequencies we have the inertial
waves which are analogous to cyclotron waves in plasmas.
Finally we have the gravity waves, or the shallow water
gravity waves, which sometimes behave like sound waves.

4.2 Two inertial waves and one Rossby wave
In this section we assume that P = gH (shallow water)
which implies that P}k h)y=0 and that the last term in

(18) is zero.
Here we will take a look at the special case when one
wave is a Rossby wave with frequency &, << fand the

other (wo are inertial waves with
&, ~ O, — f (Pokhotelov et al., 1995;1996).

Let us consider the case where v £ fand where we also
assume that H,k,,

frequencies

<< | and f << 1. It is obvious from

the dispersion relations (26) and (27), together with the
resonance conditions (10) and (17}, that all k}, must be of

the same order of magnitude, i.c. k,, ~ &k, — k.

A comparison of the four remaining terms in (18) shows
that the sum of term two and term three dominates in both

of the two approximation regimes s << k.5, and

5; — ks, where j=ab,c. The first (sccond) regime
corresponds to the case when the inhomogenity-scale of
s(x) is much larger than (of the same order as) the
wavelength. Thus the general coupling coefficient (18) is

approximated by

hea caf
V=R {G GA }dxdy

b I3
HviR vk, vik,
+.|- C:‘VU { ~ : fﬂc T e > fuf:}dxdy
wa mamb mumn
where we also have used @&, <<®,~-®,  and
k. ~ k, ~ k, inthe third term in (18).

In order to obtain a more explicit expression, without
using the compact notation introduced carlier, we
substitute (22) into (29). After some algebra, where we
used (24) and the condition &, << f~@, ~@ , we
obtain
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V——j k'u’x 0 |:H_:_ }[fsbﬁ—wh

)

4, £ — fss. |+ IR i}}dx
{ ( Kyikye J [ kye

J’K(Ik 0 (f\, +o ‘--}
(l)

e ( el e

+J iKahL' RH() ﬂ (I)
oo |H, R &,

-{fsh + d)b k),b J fvo {fsas( + U‘) Sa .: }dx (30)

ﬂ

+J- K“‘b‘ RH |:_I{_Uw£_+&:|

o0, |H, R @,

[ . & Jﬁlo {f.s 8 +w,,s0 % }dx
k).‘. k),J

igk,, gk, igk, '
— RO, - RO! - fR

where g =

Here it should be stressed that (30) is valid in both

approximation regimes 57 << ks, and s7 — k5.

The expression (30) above seems to be just as complicated
as (18) and one could wonder what we have gained. The
point is however that in (18) we have used a compact
notation which is not transparent to the reader. and
difficult to evaluate for specified cases. The expression
(30), although rather lenghty, does not contain any
operators, however, Each term in (30) is of a very simple
torm and it is thus easy to comparc the different terms
with each other and to estimate numerical values for them,
If we now further assume that s; << kyjsj the coupling

coefficient will reduce to

2 . L0 -~ “
V= J’ij'x.SuShSr f ’]\?Hn i_i CP_C_F& dx
m“ Hn R w, m(' (3!)
J K" s,8 f RH, | Hy _£.+ 4 AN
w¥e d)u !'1 R m w w

In (31) only the second term involves the shear of the
background velocity vy. This term will be of the same
order as the first term if v:)~ f. By examining 30
instead of (31) we can obtain a similar result. Thus we can
conclude that the shear of the background velocity is
important within the regime of approximation considered
in this section.

As an cxample we consider wave motion in the
atmosphere of the Earth choosing the following typical
valucs on the parameters:
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W, ~ 107 570,
f lo—il

w, ~o, ~f~10"s",

ms™, H, ~10"m, g~10 ms™

By using the unperturbed equation

gH!(x) = f(x)v,(x) we have v ~ (]09 Hy— 10‘3\:0)_;‘ and thus
the importance of shear (i.e. the condition v;, - f) depends
sensilively on the x-dependence of H, (x).

Choosing the model H, = H,,, + x? /1 and

B (x,y) = 5, exp(=x* 1 L )exp(ik,y - i ) with
Hy,, ~10"m, ! ~10"m and L~ 10°m we obtain from (31)

and (32) V~'1()msnasm,soc and H’J.-*IOBS(EU where

- . . -1, 2 i
j=a,b,c. This means that V/W, - 10 bwsm);m_/_gw , L.e. the

growth rates in the coupling cquations (14) may be of
order 107 times the incrtial wave frequency.

5. Stability

Conserved quantities are uscful for considering stability by
the Lyapunov method. The conservation laws obtained
from the noncanonical Hamiltonian (ormulation (3)
(Larsson 1998b) may then be used. One of these is the
encrgy related quantity (&:Xi{)(f*ﬁ)) which is exactly

conserved by (5)-(7). If this is a delinite (positively or
negatively) quantity then at least linear stability is
indicated.

By substituting the explicit expression of Xf“i) from

section 3 into (15), and by using the relations (5)-(7) we
obtain, after some algebra, the expression

W =-(€ x{'u)

1 ——
= J?(hvn + H v} hv, + Hyv)dxdy
0

+J {P’ }'rh ey
R K
—h | w-—h gdxdy
j a R/HE) ( HU ][ H() }d

is the vorticity and pP"(hy=Ph

(32)

where w=%-Vxv

depends on the choice of model.

The pseudo-cnergy of a wave is related to (32) by WIA["
where A is the complex amplitude of the wave. If (32) can
be both positive and negative we have the possibility of
having both positive and ncgative energy modes which can
cause instability in the system (Craik 1985).

The relation (32) is similar to that obtained by Holm et al.
(1985) which considered the energy-Casimir method, 1.c. a
Lyapunov method where the conserved quantities arc the
cnergy and the Casimirs. Two differences between the
methods are worth mentioning. Firstly, in the derivation of
their expression Holm et al. (1985) used a Bernoulli
function to describe the background flow, but for our
sheared background velocity v, =v, (x)¥ the equilibrium is
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directly obtained from a, P{H,)= flx)v,(x),
Bernoulli function is needed. Secondly, we make no use of
Casimirs, instead we consider dynamical accessible
perturbations which allow us to study a less restricted class
of equilibria. Casimirs versus dynamical accessible
variations have also been discussed by Morrison (1998).
We note that when the background velocity is zero the
r.hs. of (32) is positive deflinite (assuming P/> 0 and

50 no

H,»0) indicating at least linear stability. When the

background velocity is introduced we expect (32) to be
indefinite in many cases, thus indicating instability. A
sufficient condition for (32) (o be positive definite is

)
Vi \'
P- 0 >0and —L —>0 {33)
! HO al(R/Hll)

In the case of shallow water (B = g) the first condition can
be wrilten as v} < ¢, where ¢ = (gH,)"* is the gravity

wave speed. Since the conditions (33) only invoive
background parameters and no perturbations at all, we
know that a flow satisfying (33) will be positive definite
for all type of disturbances.

Let us now check how (32) atfects the coupling equations
(14). First we multiply (14) by C_, C, and C, respectively

a

and then add the complex conjugate to obtain

d 2 d—= =d
—IC| =C.—C, +C,—C,
de!™ Tar Tt (34)
= i, —C,C,C, +i, Yoo
i Wf

where the overbar denotes complex conjugate.
Next we add the three equations in (34), use the resonance
condition (10) and the constancy of W Thus we have

C

o u

d
al

Sewlef +wlcl)=0 (35)

W, W, and W, all have the same sign then all three
terms in (35) are positive and represents three positive
energy modes. But if one of W, differs in sign we have the
possibility of negative energy modes {(c.g. Craik 1985) and
the squared amplitudes can increase simultaneously for all
three waves without violating (hc conservation of wave
energy. But from (32) we see that if we choose a
background velocity satisfying (33), then (32) will have
the same sign for all types of disturbances, and we thus
avoid the explostve behavior that otherwise can be present.
When explosive growth occurs, which can be the case for
e.g. Kelvin-Helmholtz systems (Craik 1985), the theory
will finally, sufficiently close to the time of cxplosion,
cease to be valid because minor terms neglected in (13)
will be important (Weiland and Wilhelmsson 1977).
However it is possible in principle to include such terms in
the analysis so that a series of quasi-explosive recutrence
cvents occur. In that case the system becomes formally
simnilar to the Fermi-Pasta-Ulam recurrent case. Such an

143

analysis is however outside the scope of this paper since
we arc essentially talking about sinusoidal waves here and
the physics is changed if these are too much deformed.

6.Summary and conclusion

We have derived the general coupling coefficients tor
resonant three-wave interactions in a class of systems
containing for example the shallow water model. In the
special case of intcraction between two inertial waves and
one Rossby wave we have shown that the general coupling
coefficient could be reduced significally and that the
resulting expression contains terms depending on the
shear of the background velocity. We have also shown that
in some, not too restricted, regimes of approximation those
terms are important.

Despite that resonant wave interaction between three
nonlinear inertial waves is not passible {they cannot satisfy
the resonance conditions (10) and (17)) it is still possible
to transtcr encrgy between inertial waves by using the
coupling described above. Here we thus use the Rossby
wave Lo transfer energy between the inertial waves.

From another point of view this coupling is a nonlinear
process to move energy [rom two interacting waves, with
frequency close to (he frequency of planetary rotation,
down to a Rossby wave with a much lower frequency.
Since the Rossby wave may couple with two other Rossby
waves we thus have a mechanism to' remove energy from
frequencies close to the Coriolis frequency. This might be
important in atmospheric and ocean research where many
cnergy spectra seem to have a peak close to that frequency.
We have also looked al the stability of the system by using
a conserved pseudo-encrgy expression obtained from the
Hamiltonian theory. The result here is a condition on the
background velocity which allows us to avoid the
explosive behavior that can occur.
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