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Abstract. Hide (Nonlinear Processes in Geophysics, 1998)
has produced a new mathematical model of a self-exciting
homopolar dynamo driving a series- wound motor, as a
continuing contribution to the theory of the geomagnetic
field. By a process of exact perturbation analysis, followed
by combination and partial solution of differential
equations, the complete nonlinear quenching of current
fluctuations reported by Hide in the case that a parameter €
has the value | is proved via the Popov theorem from
feedback system stability theory.

1. Introduction

In a recent continuing advance to the self-exciting dynamo
theory of the earth’s magnetic field, Hide (1998) has
presented a mathematically novel set of three non-linear
first order differential equations. There is a particular
function involved in these which, in the slightly modified
notation used here, may be written

f(X)=1-g+ecX (1}).

In eq.(1) we have o > 0 and 0 < g < 1. If the armature
current of the series-wound motor driven by the Faraday
disk dynamo is I, the torque developed by that motor is
taken to be proportional to (1 - €)1 + eoi® . Hide (1998) has
found, by numerical and analogue electronic circuit
experiments, and by bifurcation analysis, that for 0 = ¢ a
rich dynamical behaviour, including multiply-periodic as
well as chaotic (Acheson, 1997) persistent temporal
fluctuations ensues; that for 0 < ¢ < 1 the state variables
settle at steady equilibrium values over a volume of the
system parameter space which increases with g, giving
“partial quenching” of the non-stationary behaviour; and
that for £ = 1 the fluctuations are completely suppressed.
He refers to the complete suppression of fluctuations for g =
1 as “non-linear quenching,” because the linear term in the
torque expression vanishes under this condition. Since & = |
is geophysically very relevant , Hide views the non-linear
guenching phenomenon as ndirect evidence in favour of the
likely predominance of jforced ‘as opposed to free
contributions in inducing geomagnetic polarity reversals.
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The purpose of this note, prepared after correspondence
with Professor Hide, is to give a mathematical proof of the
non-linear quenching phenomenon, based on a theorem of
V. M. Popov (Willems, 1970), concemed with the stability
of non-linear feedback systems. It is hoped that this
illustration of the way of thinking of an electrical engineer
engrossed in the study of automatic control may prove
helpful to workers in the field of geophysics.

As hinted above, it is convenient (but done with apologies)
to use upper case letters for the state variables in the Hide
equations, reserving lower case for perturbations from
equilibrium values. In addition, we mention at the outset
that, as confirmed with Professor Hide, appropriate scaling
of variables and of another system parameter allows o,
without any loss of generality, to be assigned the value 1,
and this choice is made here, Thus, confining attention to
the case € = 1, the Hide equations, for the present purpose,
become

L]

X =X(Y-1)-pzX

Y=a0-x) «xy
Z =Xz Q).

The dot denotes notes differentiation with respect to
dimensionless time t.

If (Xoo Yoo Z,) is any equilibrium state for eq.(2) and the
state variables are expressed as

X=X,+tx
Y=Y,y
Z=7Z,+z,

the exact perturbation equations are

*

X =Y x+tx({y-D+X,y-PZ,x-pX,z—Pzx
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y = -ax? - 20X, X — Ky

Z=2X, X+ X — Az (3).

The null state x = 0, y = 0, z = 0 of eq.(3) corresponds to
the appropriate equilibrium state of eq.(2). We now
examine the stability of the possible equilibrium states of
eq.(2) through the medium of eq.(3).

2 The process of self-excitation

The equilibrium states (X,, Y, Z,) of eq.(2) are readily
found and are denoted as follows:

E1=(0, a/k, 0) 4).
oa—k

E2,3=[i [i(a—k)’a(ﬁ-f-,l), J 5
ad+ k) ai+ k) al+ pk)

In eq.(5), we associate the positive sign on the square root
with E2 and the negative with E3.

It is seen that E2 and E3 exist as real equilibria only for a =
K.

For perturbations from E1, eq.(3) becomes
*

X =((o - ky)x +xy—Pzx

y=-ax’ —xy

Z=x"—Az (6)

We propose the Liapunov function (Willems, 1970)
V=x*+ (l/a)y® + B2 @)

to investigate the stability of the null state of eq.(6). There
results

% = (BV/EX) X + (BV/dy) y +(6V/62).;
=2((ct - K)R)XE ~ 2(c/)y? - 2PAz’ (8)

Since all parameters a, 3, k, A, are positive, then for o < k
{which corresponds to too low a driving couple on the

Faraday disk), ¥ is negative definite, and the null state of
eq.(3) has global asymptotic stability. This means that all
perturbations from E1, the non-excited state, collapse for o
<K.
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For o > k, however, I becomes sign indefinite in such a
way that E1 becomes a point of unstable equilibrium.
Trajectories diverge from El, but what happens to them?
We shall prove that they are attracted either to E2 or E3,
depending on the sign of the initial value of x. We shail
perform the analysis only for E2: that for E3 follows
immediately.

3 Stability of the equilibrium state E2

Substituting E2 into eq.(3) we get, after some algebra,

=y {M
x=0 Bz)[” (al+ﬁrc))

2:%}+2 iﬁ:fll]—zz ©)
\ (e + fr)

It is convenient to introduce compact notations for
quantities occurring in eq.(9):

5 (ax—-x)A

=x|x+2,/———

& al + fx

w=y-fz (10}
In terms of the operator

D = d/dr,

the Iast two members of eq.(9) become

y=-ag/(D+x)

z=g/(D+ 1),

which combine to give

_ ((a+ BD+(ald + fx)) (n
(D+A)D+x)  °©
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Thus, w is generated by a linear differential operator acting
on g. This relationship is portrayed by the block diagram
representation on Fig.1.

@+ pD+(@i+ pr)
&> D+D+ry |

Fig. 1 Block diagram representation of the relationship
between g and w,

We now consider the first member of eq.(9), rearranging
and integrating it to get

(@-x)A | (@—K)A
f’{x&”\f it Pic Er{x(0)+v i+ B
= ]wv)dr (12)

with y simply a dummy variable of integration. The {#
terms are real only for

0 (ax—x)A
L
X (1), x (0) @+ i’

Le., for X > 0. Thus, this step confines us to the half space
in which trajectories are—as we shall see—attracted to E2.

We now introduce the variable p, where

dp

@ _ 13

dr e (13

Integrating eq.(13), there results

PO-p©=  [w(y)dy (14)
)

Eqs.(14) and (12) are identical if we make the identification

iy (a—x)A
p=£n x + 1(6!/1-}—@() (15

where the arguments 1 and 0 have been dropped for
convenience.

Inverting eq.(15) gives
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_, |le-x)4
TV N (ar+ pr)

which leads, via the first member of eq.(10) to

{(a—x)A

) (ad + fx) (16)

g=¢*

The graph of g vs. p is sketched on Fig.2, with some
significant values indicated.

S
{exr —x)A
l [ (;Hﬁx)} LCAZOLS
I/ (ol + fr)
—_—:"’/ >p
"""""" N (ax—x)A
(oA + Bx)

Fig. 2 The graph of g vs. p.
Writing eq. (13) in the operator form

1

p=5w (a7

and taking eq.(17) in conjunction with egs.(11) and (16),
the non-linear feedback system shown on Fig.3 results,

(e + B)YD +(ad + fx))
(D+AND+x)D

-1 | =
g P

Fig. 3 Representation of the perturbation equations for E2,

fust one sfep remains to cast the problem into a form
suitable for application of the Popov Theorem. We note that
if the system shown on Fig.3 settles to a static equilibrium
state, it must do so with w = 0, otherwise p would still be
changing. The static gain of the process relating w to g is —
(ad + Pr)/(xA) = 0 so that g must also settle at zero. This
means that p must settle at the value
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(a—K)A (a—x)A
f’{x@ Vit e _E{x(o) N\ o p
= ]w(}/)d}/ a2
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o (a—x)A
>_
x (@ x () ald + fx
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. (a—x)A
T (i + )

which leads, via the first member of eq.(10) to

(x—x)A

" (ad + Br) (16)

g=¢"
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Writing eq. (13) in the operator form

1

p=5w {amn

and taking eq.(17) in conjunction with egs.(11) and (16),
the non-linear feedback system shown on Fig.3 results,

(@ + BYD + (@A + BK))
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g P

Fig. 3 Representation of the perturbation equations for E2.

Just one step remains to cast the problem into a form
suitable for application of the Popov Theorem. We note that
if the system shown on Fig.3 settles to a static equilibrium
state, it must do so with w = {0, otherwise p would still be
changing. The static gain of the process relating w to g is -
(oA + Px)/(xX) # 0 so that g must also settle at zero. This
means that p must settle at the value
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For the problem in hand, it is readily calculated that the co-
ordinates of the modified polar plot of G(s) are

a%2+ﬁk'2}

g(a+ﬁ).{a)z + @i h

¥=ReGljo) = (@ + Y +&°) o
and
—(ax+ &){a} +M
=l jo) = (ore+ /7) (25)
Y (+ AXT +10)

From these expressions, it is possible to deduce by
straightforward geometrical reasoning that (x, y) aiways
lies in the third quadrant ; that the magnitudes of x and y
decrease monotonically with o ; and that the ratio y/x
increases monotonically with @’ except in the single case
«/A = 1, which gives y/x constant. Thus, the modified polar
plot is either a straight line through the origin (k/A = 1) or a
curve concave on the upper side, as sketched on Fig. 6.

A 0oImG(jw)

"Popov line"

—

ReG{jm

k/A=1 (] )
KAzl

Fig. 6 The modified polar plot of the system shown on Fig.
4.

Our argument reaches its climax in Fig. 6. It shows that the
modified polar plot can be fitted with an infinite number of
Popov lines passing through the origin, i.e., corresponding
to kn, = 0. Thus, global asymptotic stability of the null state
of the system shown on Fig. 4 is proved and, retracing the
development, we appreciate that this proves that E2 attracts
all trajectories starting in the half space X > 0.

4 Concluding remarks

The non-linear quenching effect reported by Professor Hide
is now proved, and that is all that this note set out to do. It
seemed interesting, however, to explore whether any
manoeuvre could be discovered which would result in
flipping of the magnetic field i.e., in changing the sign of x
in the case £ = 1. Various strategies have been tried for
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pumping the parameter «, which is a scaled version of the
couple applied to the Faraday disk, but so far all have
failed. It seems that the plane X = 0 represents an
impenetrable batrier for trajectories of motion. However, a
possibly suggestive experiment is illustrated in Fig. 7.

2 h

4 X

L

; \

T

Fig. 7 An experiment to induce current—and therefore
magnetic field—{flipping in the case & = 9999, o= 1, p = 1,
k=05 x=1;h=3for20<1<25

Here we have set £ = 9999 --not quite 1, but close enough
to quench fluctuations throughout almost the whele (o, J,
K, A) space-- in the full Hide equations and have augmented
his equation for dz/dt with an input function, h, to represent
a fransient driving couple applied to the motor shaft.
Flipping is readily induced by this expedient. Whether this
experiment can be termed physically reasonable is beyond
the author’s competence to tell, but it certainly represents
field reversal by a forced contribution. The physical
significance of not setting & exactly to the value 1 in this
experiment is that an ever-so-slight permanent component
is necessary in the motor flux to prevent the back
electromotive force from collapsing completely as the
armature current passes through zero, thus leaving a non-
zero driving force to penetrate the wall X =0,
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