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Abstract. Sceveral (echnical suggestions to conslruct a high-
resolution spectral model on a sphete (the T682 barotropic

maodel) are presented and their implementation in FORTRAN77

libraries is provided as a free software package ISPACK
{(http://www.gfd-dennou.org/arch/ispack/)
A test experiment on decaying turbulence is conducted (o
demonstrate the ability of the model.

1 Introduction

Although the spherical harmonie spectral method is com-
monly used now in a wide range of numerical studies from
iwo-dimensional decaying turbulence on a sphere (Yoden and
Yamada, 1993) to global climate modeling (Boeretal., 1992),
the method is being abandoned in state of the arl compuling
and other methods such as the spectral element method (Tay-
lor et al., 1997), Anite element method (Stuhne and Peltier,
1996), Fourier-based pseudospectral method (Fornberg and
Merrill, 1997) and etc., are under development. This is be-
cause the spherical harmonic spectral method has a serious
disadvantage when the method is used for high-resolution
models. That is, the method requires the discrete spheri-
cal harmonic transform, but there is not any fast transform
algorithms known currently for this case, which makes the
method very costly compared with other new methods.
However, the spherical harmonic spectral method still has

desirable features: itis easy to code and has complete isotropy.

In particular, the latter feature is essential for theoretical stud-
ies, ¢.g., studies about turbulence on a sphere. Therefore, it is
not meaningless 1o tune up spherical harmonic spectral mod-
els at high-resolution.

In this paper, we present not only several technical sug-
gestions o construct a high-resolution spectral model on a
sphere we alse give a decaying turbulence experiment with
the T6E2 barotropic model. We adopted the standard Eule-
rian formulation for its simplicity and its conservation prop-
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crty although the semi-Lagrangian formulation has been in-
corporated into state of the art numerical forcast models, e.g.
Ritchie et al. (1995).

2 Basic equations and spectral model

The system under consideration is a non-divergent two-
dimensional flow with hyper viscosity on a rotating sphere.
The flow is governed by the conservation law of the absolute
vorticity g{\, 1, t) = ¢ + 28 following the fluid motion

Dq ?;t] + Flwgl = (-1 ln, (V2 + 2)% g (1)
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where C(A, u, t) is the vorticity ({ = V2y), w(A, @1, t) is the
stream-function, X is the tongitude, ;2 = sin ¢, ¢ is the lan-
tude, t1s the tme, {2 is the angular speed of rotation of the
sphere, v, is the hyper-viscosity coelficient, p is the order of
hyper-viscosity, and V2 is the horizontal Laplacian we have
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Here the basic equation (1) is represented in dimensionless
form.

Using the spectral method, we discretize the dependent
variable g using spherical harmonics as
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where, Af is the truncation number, and the Y* (A, u) are
spherical harmonics defined as
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where P/™(y) is the associated Legendre functions defined
as follows
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Since ¥, is the eigenfunction of Laplacian as
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3 1s calculated from g as follows
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Multiplying the basic equation (1) by Y, ™, und intcgrat-
ing over the whole sphere yields the dlscretlzed ordinary dif-
ferential equation
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Here, the orthogonal relationship
1 2T ol ,
e / /_1 YY) dpdh = dop b, (12)
is used.

Practically speaking, the integration (11) is calculated nu-
merically as
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where, I and J are the number of longitudinal and latitudinal
grid points, respectively; A, = 2w/, (4 = 1,2,--- 1),
i (g < prp <o+ < qug)are J zero points of PY (). Nor-
mally, the number of longitudinal and latitudinal divisions /
and J are taken as [ > 3A7 and J > 3M /2 lor de-aliasing.
Fij is the value of F, ¢] at the point (X, ) = (A p;) cal-
culated from
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w; is the Gaussian weight defined as follows
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3 Technical suggestions for high-reselution model

The costliest part of the spectral model introduced in the pre-
vious scction is Lo evaluate the discrete transform (13) and
the discrete inverse transforms (14)—-(17). Since spherical
harmonics consist of the associated Lengndre functions and
trigonometric functions, these transforms can be divided into
two transforms. The transform (13) is written

J
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and inverse transforms (14)-(17) become
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Here, A represents g and # in (14)-(17). The transforms (21)
and (223 are nothing but Fourier transform, which can be cal-
culated cfficiently by using the FFT. For the translorms (20)
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and (23), however, there is no fast transform known except
[or the . = 0 case, for which a fast approximate transform is
devised by Alpert and Rokhlin (1991). Thus, the transforms
(20) and (23) must be calculated straightforwardly. To calcu-
late {20) by a computer, the main problem is CPU cost, but
insufficiency of memory area becomes also a serious prob-
lem when the model resolution is very high, To store all the
associaled Legendre functions in memory, an array of size
JM{M + 1)/2 is required. For the alias-free grid, this size
is order of 3Ms/4. In the test run, we set M = 682, which
makes the size of the array 2.38 x 108, In a double-precision
calculation, this array requires 1.9GB memory space. Al-
though the required memory space as well as CPU cost can
be made a half by utilizing symmetry of the associated Leg-
endre functions, such a requirement makes the computation
very difficult.

The suggestion to avoid this difficulty is very simple; the
associated Legendre functions do not have to be stored if they
are calculated every time the transforms (20) and (23) are
calculated. This idea does not appear to be very sound for
the following reasons.

1. The cost to compute the associated Legendre functions
is of the same order as that to compute the transform.
This appears to make the computation quitc costly.

2. The associated Legendre functions must be computed
by the use of recurrence formulas. Such computations
are not normally suitable [or super compulters with vec-
tOr Processors.

However, these two points do not lead to serious difficulty.
Although the first point is perfectly true, it is possible to
reduce the relative computational cost by executing several
transforms simultaneously. For example, since P, ™(u} =
P!*{j1), the Legendre trans{orm for e can be executed si-
multaneously. Furthermore, the inverse Legendre transforms
(23) for +» and g should be computed together. The second
point above is also true. However, this problem can also be
avoided by setting the most inner do-loop variable to the lat-
itude number j.

In the transform (23), not only the associated Legendre
functions themselves but also their derivatives are required.
However, the derivatives are commonly not used explicitly
but the relationship
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arc substituted into the fifst cquation to eliminale the deriva-
Lives. We, instead, use lhe following recurrence formula
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to obtain P7* and P /dy simultaneously. This does not
reduce the amount of computation very much but makes the
model program very simple.

Another difficulty comes from the hyper-viscosity term in
(1). When the truncation number M is very large, the co-
efficient 1n the second term on the right hand side of (10)
becomes huge. This makes the ordinary differential equation
(10y a “sliff” equation (see Press et al., 1992). Such a stiff
equation is very difficult to integrate by explicit schemes,
e.g., Runge-Kutta, because the time step must be kept very
small to avoid numerical instability. The general solution to
this problem is to use implicit schemes. However, implicit
schemes, which require solving very large linear equations,
are costlier than explicit schemes. To avoid this difficulty, we
transformed the equation (10}) as

d ~ v 217t Fr, op 7 11—2}%¢
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and applied Runge-Kutta scheme 1o this transformed equa-
tion, which makes it possible to take larger time step.

These suggestions described above have been already im-
plementcd as FORTRAN77 libraries in a free software IS-
PACK (Ishioka, 1999), which is available from http: //
www.gfd-dennou.crg/arch/ispack/.

4 Setup of the test experiment

As atest run, we conducted a numerical experiment at similar
setup as Yoden et al. (1999) except that only a non-rotating
(£ = 0) case is considered in this paper. The basic equation
(1) is integrated from an initial random flow field, of which
energy spectrum is given by,

An/?

T+ o) (n=2,---,M). (28)

Here the energy density is given by,

E{n,t) = %n(n +1) Z [ m|2 (n=2,---,M). (29

Here the complex amplitude is determined so that it has ran-
dom amplitude and phase under the above restriction.
In (28), the constant A is defined as follows

FEDS (4 10)" (30)

n'}/z

so that the total kinetic energy

= ZE:H‘:U—I (31)

n—2



108

The computation of the basic equation (1) is conducted
with the spectral method described in Sect. 2. The truncation
wavenumber M is set to 682, and the order of hyper-viscosity
pis set to 8 with the coefficient v, = 1% 107, The spectral
peak of initial energy ng is set to 50, and the parameter -y,
which decides the initial energy distribution, is set to 100.
Time evolutions are computed with the fourth-order Runge-
Kutta method applied to the transformed equation (27), in
which the time increment At is set to 5 x 1074

5 Results of the test experiment

Firstly, we check the efficiency of the implementation of the
model. Figure 1 shows the CPU-time required to integrate
the model by one time-step on the FUJITSU VPP500 su-
percomputer for several truncation numbers M. Although
the operation counts needed for one time-step integration are
of order M*, the CPU-time is approximately proportional to
M? where M is smaller than about 200. This is because
the length of the maost inner do-loop, i.e., “vector length”
in the implementation of the spherical harmonic transform
is J/2 ~ 3M /4, which enables the vector processor CPU
to conduct operations faster in proportion o M. However,
when M 1s large enough , this acceleration saturates so that
the CPU-time is proportional 1o A%,

Secondly, we show some results of the test experiment de-
scribed in the previous section. Figure 2 shows time evolu-
tion of energy spectrum E(n,t). A clear power law close
to n~* appears in the enstrophy cascading range n > ng(=
50), which was not obtained in the T341 experiment of Yo-
den, et al. Our T682 model, which ensures a wider cascading
range, makes it possible o sce the power law clearly, This
power law is considered to be due to the discontinuity of the
vorticity fiekd at the edge of the coherent vortices described
below.

The corresponding vorticity field is shown in Fig. 3. The
initial random vorticity field (not shown) has developed into
a number of coherent vortices through mergers ot vortices
(Fig. 3). To demonstrate the advantage of our high-resolution
model, a part of Fig. 3 is magnified and shown in Fig. 4,
where very fine structure of vorticity filaments around the
coherenl vortices are clearly seen. Furthermore, the resolu-
tion of the model is high enough to magnify a part of Fig. 4
again to make finer structurc of the vorticity {ilaments more
clear (Fig. 5).

6 Sommary

Several technical suggestions 1o construct high-resolution spec-

tral models on a sphere were presented. A test experiment
was conducted with the T682 barotropic model constructed
by using these suggestions.  The results demonstrated the
ability of the model and showed that the suggestions are ac-
tually uscful to construct a high-resolution spectral modet. A
clear power law close to " of the energy spectrum is also
confirmed thanks 1o the very high resotution?
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Fig. 1. CPU time required to inte-
gratc the model by one lime-step
on  FUJITSU VPPS0G  supercomputer
for & cases of tuncation number
M = 85,170,213, 255, 341, or 682.

Fig. 2. Energy spectra at ¢ = 0 (broken ling)
and w ¢ = 5 {solid line). Dashed line is en-
ergy spectea at ! = 5 on T341 experiment
adopted from Yoden et al. (1999) for com-
parison.
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Fig. 3. Vorticity field at ¢ = 5. Whole sphere drawn with Mollweide projection centered at (A, ¢) = (90°,0°).

Fig. 4. Magnification of a part of Fig. 3 drawn with orthographic projection Fig. 5. Magnification of a part of Fig. 4 drawn with orthographic projection
from (A, ¢) = (90°, —157). Lines of meridians and parallels are drawn from (A, ¢) = (73°,—30°). Lines of meridians and parallels are drawn
for every 5°. for every 1°.



