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Diffusive draining and growth of eddies
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Abstract. The diffusive effect on barotropic models of meso-
scale eddies is addressed, using the Melnikov method from
dynamical systems. Simple geometric criteria are obtained,
which identify whether a given eddy grows or drains out, un-
der a diffusive (and forcing) perturbation on a potential vor-
ticity conserving flow. Qualitatively, the following are shown
to be features conducive to eddy growth (and, thereby, sta-
bility in a specific sense): (i) large radius of curvature of the
eddy boundary, (ii) potential vorticity contours more tightly
packed within the eddy than outside, (iii) acute eddy pinch-
angle, (iv) small potential vorticity gradient across the eddy
boundary, and (v) meridional wind forcing, which increases
in the northward direction. The Melnikov approach also sug-
gests how tendrils (filaments) could be formed through the
breaking of the eddy boundary, as a diffusion-driven advec-
tive process.

1 Eddies and their stability

Rings (or eddies) are significant oceanographic features
which contribute considerably to fluid transport in the ocean.
In particular, mesoscale (of the order of 100 km) rings
formed near the Gulf Stream sometimes survive as coher-
ent structures for periods of up to one year (Richardson,
1983). Submesoscale (of the order of 10 km ) eddies may
also be long-lived, and we address both mesoscale and sub-
mesoscale eddies in the present work. The observational per-
sistence of such eddies has led to theoretical (Flierl, 1988;
Helfrich and Send, 1988; Dewar and Gailliard, 1994; De-
war and Killworth, 1995; Paldor, 1999), numerical (Helfrich
and Send, 1988; Dewar and Gailliard, 1994; Dewar and Kill-
worth, 1995; Dewar et al., 1999; Paldor, 1999; McWilliams
et al., 1986) and experimental (Voropayev et al., 1999) analy-
ses of stability. Since many results indicate that eddies would
tend to beunstable, explaining their persistence remains an
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active area of research. In this paper, we address a particular
aspect of stability of such eddies, which reflects the effect of
small diffusivity on the eddy boundary.

Though characterised by swirling fluid motions, eddies
are often identified experimentally throughEuleriancontour
plots of temperature, height, salinity, or potential vorticity
fields, usually obtained from two-dimensional satellite imag-
ing data (for a review and pictures of contours, see Richard-
son, 1983), or from numerical schemes. Since fluid motion
in the upper ocean tends to remain on surfaces of constant
temperature (resp. salinity, potential vorticity, etc), rotational
motion results around maxima/minima points of the appro-
priate scalar field, thereby forming a ‘ring’ (or vortical mo-
tion) in the expected sense. Often,tendrils(or filaments) are
seen to emanate from these eddies, which appear to wrap
around the eddy (see Fig. 4 in the experimental paper by
Voropayev et al., 1999, for example).

The dynamics governing the behaviour of such eddies
is assumed to be close to a two-dimensional incompress-
ible flow in which potential vorticity is conserved (Pedlosky,
1987). Understrict conservation with the dynamics steady in
a moving frame, no substantial deformations of eddies are to
be expected, since the Lagrangian trajectories are integrable
for finite times (Brown and Samelson, 1994). In many of
the standard stability analyses, such a system is perturbed
through an arbitrary mode, whose growth rate is determined
by linearising the potential vorticity conservation equation.
In this study, we adopt a different approach, which spec-
ifies the physical reason for imposing a perturbation, and
also does not rely on a linearisation of the dynamics. Our
perturbation shall be the result of small scale turbulence in
the ocean, which is frequently modelled by a diffusive term
in the governing differential equation (see Haidvogel et al.,
1983, for example). The dynamics are then governed by an
advection-diffusion equation for the scalar potential vortic-
ity. Sucheddy diffusivityhas significant consequences in the
advection of passive scalars, in general, fluids, and has been
addressed in statistical (Poje et al., 1999), numerical (Miller
et al., 1997; Poje et al., 1999) and theoretical (Fannjiang
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and Papanicolaou, 1994) senses. Bounds on the eddy dif-
fusivity (Fannjiang and Papanicolaou, 1994; Biferale et al.,
1995; Mezíc et al., 1996), and descriptions of chaotic motion
(Rom-Kedar and Poje, 1999; Klapper, 1992; Jones, 1994),
are several features of interest. Even whennot modelling
flows with diffusivity, numerical methods often introduce a
diffusivity in the interest of numerical stability, and, there-
fore, such numerical models could also be thought of as in-
cluding eddy diffusivity effects (Rogerson et al., 1999). Un-
like in regular advection-diffusion equations, the scalar quan-
tity here is anactive(as opposed to passive) scalar, since the
potential vorticity possesses a relationship to the fluid veloc-
ity field (Pedlosky, 1987). In this study, we shall investigate
how the dynamic process of eddy diffusivity affects the ge-
ometry of eddies, using a new approach, which uses elements
from dynamical systems theory (Balasuriya et al., 1998), and
simple geometric arguments.

Our first focus in this paper is to obtain a relationship be-
tween the growth (or decay) of such eddies, and the charac-
teristics of the scalar potential vorticity field. Would it be
possible, for example, to view the field, identify a particu-
lar eddy, and predict its chances of survival based on simple
geometric properties of the scalar field? In response to this,
we are able to develop a collection of (diffusivity-driven) ge-
ometric conditions for eddy growth, outlined in Sect. 5. It
would be instructive to test our criteria upon available data
sets with sufficient resolution. Moreover, in Sect. 7, we also
obtain a qualitative condition on (small) wind forcing, which
also contributes to eddy growth. ‘Growth,’ as specified in
both these cases, will be defined through the enlargement of
the eddy boundary; a shrinking boundary will correspond to
a ‘draining’ eddy. Growing eddies have the potential of be-
ing more visible, and, therefore, are expected to be the longer
lasting eddies in the ocean. Draining (shrinking) eddies, on
the other hand, will eventually lose their constituent water
to the ambient flow, and disappear. Therefore, in a sense,
our eddy growth criteria reflect a form of eddy stability in
the presence of (small) eddy diffusivity and wind forcing. It
must be re-emphasised that this ‘stability’ is not in the tra-
ditional sense of linear stability, in which the growth rate of
various modes of imposed perturbations is analysed, as in
Flierl (1988); Helfrich and Send (1988); Paldor (1999); De-
war and Killworth (1995); Dewar et al. (1999).

The analysis we follow in this study is generic, and should
be applicable to any system satisfying a similar advection-
diffusion partial differential equation in two dimensions (for
example, in tracer mixing in hydrodynamics, or in atmo-
spheric flows). In other words, we are not using a specific
model for the flows; rather, we are simply assuming that the
flow satisfies the appropriate dynamical equation, and pos-
sesses the necessary kinematical properties of an eddy. These
statements are made precise in Sect. 2. Section 3 then out-
lines the Melnikov approach from dynamical systems theory,
which leads to the eddy growth criteria in Sects. 5 and 7.

A secondary goal of this paper is to give a possible expla-
nation for the tendrils which emanate from eddies. Numer-
ical and experimental studies, even in the laboratory rather

than in the oceans, display such filaments (see Voropayev
et al., 1999, for example), whose presence is certainly linked
to eddy diffusivity (Robinson, 1983). Nevertheless, a geo-
metric description of the process is lacking. Our analysis of
the advection-diffusion process, from a dynamical systems
viewpoint, affords an immediate and simple reasoning for
the appearance of a tendril in a certain type of eddy, as ex-
plained in Sect. 6. In this case, too, it is necessary to address
the deformation of the eddy boundary, which links the two
aspects of this paper.

2 Dynamics

In this section, we state the mathematical equations which
need to be satisfied, and also characterise the eddy bound-
ary whose deformation is of interest. Consider a two-
dimensional incompressible flow which is steady in a moving
frame. This hypothesis is in keeping with many Gulf Steam
models (Pierrehumbert, 1991; del Castillo-Negrete and Mor-
rison, 1993; Pratt et al., 1995; Balasuriya et al., 1998; Weiss
and Knobloch, 1989), since the Gulf Steam is steady in a
gross sense in an eastward moving frame. Let(x, y) be
the eastward and northward coordinates, andψ0(x, y, t) the
streamfunction of the flow. Suppose that there exists a quan-
tity (which we shall call the potential vorticity)q0(x, y, t)

which is conserved following the flow. Such is afforded in
barotropic models, for example, by the quantity∇

2ψ0 + βy,
whereβ is the Coriolis parameter (Pedlosky, 1987). Depend-
ing on the particular outlook adopted, many alternative def-
initions of potential vorticity exist (Pedlosky, 1987), but for
our purposes it suffices to think ofq0(x, y, t) asanyquantity
which is preserved by the flow, and thereby

Dq0

Dt
=
∂q0

∂t
−
∂ψ0

∂y

∂q0

∂x
+
∂ψ0

∂x

∂q0

∂y
= 0. (1)

Particle trajectories are found by solving the ordinary differ-
ential equations

ẋ = −
∂ψ0

∂y
, ẏ =

∂ψ0

∂x
. (2)

If q0 is nondegenerate and smooth for all time, the flow (2)
is integrable (Brown and Samelson, 1994), and complicated
motion is barred. Now suppose that, in this formulation, an
eddy exists, which shall be characterised as follows. At a
fixed time t0, the contours of theq0(x, y, t0) field has a lo-
cal maximum/minimum, around which closed contours exist
(sinceq0 is preserved by the flow, one expects the flow to re-
main on these contours, thereby generating the swirling mo-
tion of an eddy). This is acontinuousmodel for the potential
vorticity q0, and is, therefore, somewhat different from the
often used piecewise constant models (Flierl, 1988; Helfrich
and Send, 1988; Paldor, 1999). Now, this entire structure
would move at a constant velocity, since the flow is assumed
steady in a moving frame. In other words, the contours repre-
sent streamlines, but not necessarily pathlines, and, therefore,
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Fig. 1. Potential vorticity contours (q0(x, y, t0) = constant).

our definition of an eddy is in an Eulerian rather than a La-
grangian sense, similar to the development in Haller and Poje
(1997), who, in contrast, base their definitions on stream-
function contours, and limit the analysis to adiabatic flows.
We intend to discuss the possibility of the growth of the eddy,
when a suitable diffusive perturbation to the dynamics of (1)
is added. To do so, we must first identify the boundary of the
eddy. This shall be a contour ofq0(x, y, t0) beyond which
the contour structure changes from simple closed curves to
something else. It is not difficult to see that, in order for
this to happen topologically for a continuous functionq0, the
boundary of the eddy must contain at least one saddle point
of q0(x, y, t0). In this paper, we shall only consider exactly
one saddle pointA, in which case, the eddy has the struc-
ture shown in Fig. 1 (see Fig. 1 of Weiss, 1994, for a similar
picture generated through a kinematic isolated eddy model).
The saddle pointA is a specialised point on the eddy bound-
ary, and shall also be referred to as thepinch-off point. Under
our present assumptions, this eddy structure would rigidly
translate; no growth or shrinking can occur.

Potential vorticity conservation is, in reality, only approxi-
mately satisfied for oceanic flows (Pedlosky, 1987). We shall
consider the case where the flow satisfies not the dynamics
of (1), but the ‘nearby’ dynamics given by

Dq

Dt
=
∂q

∂t
−
∂ψ

∂y

∂q

∂x
+
∂ψ

∂x

∂q

∂y
= ε

[
∇

2q + f (x, y, t)
]
.(3)

Here,q(x, y, t) is a perturbed potential vorticity, and the cor-
responding streamfunction isψ(x, y, t). The small positive
quantity ε governs the size of both the diffusive term∇2q

and the additional forcingf (x, y, t), and may be thought
of as a reciprocal Ṕeclet number. In an oceanographic con-

text, the dynamics (3) models the presence of eddy diffu-
sivity (averaged effect of small scale turbulence), and wind
forcing, but assumes that these are both small effects in com-
parison to the conservation of potential vorticity (i.e.ε is
small). Equation (3) is an advection-diffusion equation; the
potential vorticity changes with time due to advection (flow
of particles which have a signature potential vorticity) and
also diffusion (the slow decay of potential vorticity, indepen-
dent of attachment to particles). This cannot be thought of as
a linear equation since the potential vorticity is linked with
the streamfunction. Assuming the barotropicβ-plane model
(whereq = ∇

2ψ+βy), it is possible to show that the stream-
functionψ is orderε close toψ0 (Balasuriya, 1997). Crucial
to this proof is the absence of boundaries (or being far re-
moved from boundaries); if not, this closeness may worsen to
O(

√
ε), as suggested by recent results from fluid mechanics

(Caflisch and Sammartino, 1998). The governing equations
of particle trajectories

ẋ = −
∂ψ

∂y
, ẏ =

∂ψ

∂x
, (4)

has a velocity field which is, therefore,ε-close to that of (2).
It should be noted that the ‘steady in a moving frame’ prop-
erty has been destroyed in the perturbed flow (4); it is gen-
uinely unsteady. The eddy boundary now perturbs: it may
enlarge (a growing eddy), decrease (a shrinking eddy), or de-
velop kinks (leading to tendrils). This geometric deformation
shall be analysed using a technique from dynamical systems
theory called the Melnikov method.

3 Melnikov function

To use the so-called Melnikov approach, it is first necessary
to identify a fixed point and an associated homoclinic trajec-
tory of the unperturbed fluid trajectory equation (2). Such
exist if we consider the motion not in the(x, y) space, but in
the moving coordinate frame in which the motion is steady.
To be concrete, let us define new variablesξ = x − c1t and
η = y − c2t , such that the flow of (2) is steady in the(ξ, η)
frame (note, that in many standard oceanographic applica-
tions, c2 = 0; yet we are able to address this more general
case in which eddies may propagate in an arbitrary direction,
incorporating, for example, the eddies described in Dewar
and Gailliard, 1994). Then, sinceξ̇ = ẋ−c1 andη̇ = ẏ−c2,
we have

ξ̇ = −
∂

∂η
[90(ξ, η)+ c1η − c2ξ ]

η̇ =
∂

∂ξ
[90(ξ, η)+ c1η − c2ξ ] . (5)

Notice that, since the flow must be steady in this frame,90
has no explicitt-dependence, and, therefore, can be repre-
sented purely in terms of(ξ, η). We are adopting the con-
vention that a capital letter denotes the variable with respect
to the(ξ, η) coordinates. We see that90(ξ, η) + c1η − c2ξ

serves as an effective streamfunction in the moving frame. It
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is not difficult to show using (1) expressed in the(ξ, η) coor-
dinates thatQ0(ξ, η) is functionally related to this effective
streamfunction; the flow is confined to the curvesQ0(ξ, η) =

constant (or equivalently, curves where the effective stream-
function is constant). An incidental observation, which shall
become important later, is that the spatial derivatives∇, ∇

2,
etc, remain invariant under the transformation from(x, y) to
(ξ, η).

Now in the(ξ, η) frame, the eddy illustrated in Fig. 1 ex-
ists as asteadyobject, and, therefore, the special pointA is,
in fact, a fixed point of the flow (5). Additionally, it is a sad-
dle point of theQ0 scalar field, and hence,∇Q0 is zero atA.
With no loss of generality, we shall choose the origin(0, 0)
of the (ξ, η) system to be precisely at the pointA. Note the
presence of a specialised trajectory of (5), which approaches
the origin in forward and backwards time. This is ahomo-
clinic trajectory; (a branch of) the unstable manifold of the
fixed point coinciding with (a branch of) its stable manifold.
The stable manifold (denotedW s) is the set of points which
asymptotically approaches the fixed point in forward time,
while the unstable manifold (denotedWu) does so in back-
ward time. The homoclinic precisely defines the eddy bound-
ary, and, therefore, the growth of the eddy is affected by how
this homoclinic trajectory perturbs. Now the homoclinic tra-
jectory can be represented by

(
ξ̄ (t), η̄(t)

)
, parametrised by

time t , as shown in Fig. 2. At each pointP (t) =
(
ξ̄ (t), η̄(t)

)
,

one can draw a normalN(t) to the eddy boundary, whose di-
rection is given by the vector∇Q0

(
ξ̄ (t), η̄(t)

)
, which points

either into or out of the eddy (this direction remains con-
sistent on the homoclinic). This vector decays to zero as
t → ±∞; i.e. as the origin is approached. We now ad-
dress how the homoclinic trajectory, which forms the eddy
boundary, perturbs under the dissipative perturbation given
by (3).

Suppose the solution to (3) is given in terms of the moving
frame coordinates by9(ξ, η, t). An explicit t-dependence
exists in this perturbed streamfunction, since the flow is no
longer steady in the moving frame. However,9 and90 dif-
fer only byO(ε). The relevant particle trajectories in the
moving frame are obtained through solving

ξ̇ = −
∂

∂η
[9(ξ, η, t)+ c1η − c2ξ ]

η̇ =
∂

∂ξ
[9(ξ, η, t)+ c1η − c2ξ ] . (6)

In contrast with the unperturbed moving frame equation (5),
equation (6) has explicitt-dependence. Its phase space, then,
is three-dimensional, and given by the variables(ξ, η, t). The
fixed point at the origin perturbs to a trajectory in this three-
dimensional phase space, which remainsO(ε) close to the
line (ξ, η) = (0,0). The associated stable and unstable man-
ifolds of this trajectory, two-dimensional in this three-dimen-
sional phase-space, also persist. The proofs of these two
claims follow from theoretical results from dynamical sys-
tems (Hirsch et al., 1977; Fenichel, 1971). The key point,
however, is that there is no reason for the stable and unsta-
ble manifolds to coincide any more. Imagine that we have

(t))

u
Ws

W

η

(t),

ξ

∆

Q 0 (ξ η

N(t)

A

Fig. 2. The unperturbed eddy in the(ξ, η) moving frame.

intersected the three-dimensional phase-space with a plane
{t = constant}. If unperturbed (ifε = 0), one obtains ex-
actly the picture of Fig. 2 in each and everyt-slice. When
ε 6= 0, on the other hand, a generic picture of the form of
Fig. 3 is formed. The perturbed manifoldsW s andWu la-
belled in Fig. 3 are, in reality, the intersections of the two-
dimensional manifolds with thet = constant time-slice. The
Melnikov approach provides a method of measuring the dis-
tance between the perturbed manifolds in this time slice of
the phase-space. Consider any pointP(t) =

(
ξ̄ (t), η̄(t)

)
on

the unperturbed homoclinic (sketched as a dashed curve in
Fig. 3), and think of measuring the distanced(t) between the
perturbed manifoldsalong the normalN(t) drawn atP(t).
This d(t) shall be asigneddistance, whose sign is allocated
as follows. If the vector drawn from the perturbed stable
manifoldW s to the perturbed unstable manifoldWu is in the
direction of∇Q0 (P (t)), then a positive value is assigned; if
in the opposite direction, a negative value is given. Notice
that if d(t) = 0, there is an intersection between these mani-
folds atP (t), which may result in complicated mixing across
the eddy boundary nearP(t) due tohomoclinic tangling. It
turns out thatd(t) can be expressed as

d(t) = ε
M(t)∣∣∇Q0 (P (t))

∣∣ +O(ε2), (7)

whereM(t) is theMelnikov function(for more details, see
the standard reference Guckenheimer and Holmes (1983)).
In an intuitive sense, one may think of (7) as being a Taylor
expansion of the distance with respect to the small parameter
ε, whose leading order term involves the Melnikov function.
Thus, for smallε, M(t)’s behaviour essentially governs the
splitting betweenW s andWu at P(t) (the denominator of
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η

ξ
W A

P(t)

d(t)

u
W

N(t)

s

Fig. 3. The perturbed eddy in the(ξ, η) moving frame.

theO(ε) term is nonzero for allt , though it approaches zero
ast → ±∞).

We now write an expression forM(t) which results di-
rectly from using the dynamical equations (5) and (6), and
which was developed in a slightly different context by Bal-
asuriya et al. (1998). Their analysis pertains to cats-eyes
regions adjacent to oceanic jets, and the possibility of fluid
from the jet core escaping to retrograde regions. Neverthe-
less, a similar approach works for the Eulerian eddies of this
paper, with only slight modifications necessary to the origi-
nal proof in Balasuriya et al. (1998). In the present setting,
we simply state that the Melnikov functionM(t) can be ex-
pressed as

M(t) = Md +Mf (t), (8)

where the diffusive contributionMd is given by

Md =

∫
∞

−∞

[
∇

2Q0
(
ξ̄ (τ ), η̄(τ )

)
− ∇

2Q0(0, 0)
]

dτ, (9)

and the forcing contributionMf (t) by

Mf (t) =

∫
∞

−∞

[
F

(
ξ̄ (τ ), η̄(τ ), τ + t

)
− F (0, 0, τ + t)

]
dτ. (10)

Here,F(ξ, η, t) = f (x, y, t), following our standard nota-
tion of using a capital variable to denote quantities in the
moving coordinates. For details of the derivation of these re-
sults, the interested reader should follow the original proof
(Balasuriya et al., 1998), making appropriate corrections for
the differing geometry provided by eddies. The power of

s
W

η

ξ

Q

N(t)

A

Flow

u

0

d(t)

∆

W

Fig. 4. A warm eddy withM(t) > 0.

these expressions is that no knowledge of the perturbed ve-
locity field is required; the Melnikov function can be repre-
sented only in terms of quantities related to the unperturbed
flow and the wind forcing. We will now use these results to
derive conditions which specify whether a given eddy grows
or shrinks under the diffusive perturbation.

4 Warm and cold eddies

It is necessary to first identify two types of eddies which are
seen in the ocean: warm-core and cold-core eddies. With re-
spect to the Gulf Stream, eddies which split off from the Gulf
Stream and meander onto the colder northern side arewarm-
core eddies, since they contain waters from the warmer south-
ern oceans (Richardson, 1983). On the other hand, cold-core
eddies split off towards the southern side of the Gulf Stream.
Temperature, being a measure of energy, is related to poten-
tial vorticity, and hence, we shalldefinea warm eddy to be an
eddy in which the potential vorticity in the interior takes on a
higher value than that of the exterior; a cold eddy is defined
analogously.

The principal difference between a cold and warm eddy is
the direction of the vector∇Q0 on its boundary. For a warm
eddy,Q0 increases towards the eddy’s interior, and hence,
the vector∇Q0 (P (t)) will point inwards at every point on
the eddy boundary. Now, consider the case whereM(t) is
positive at some value oft . Then, by (7),d(t) > 0 for suffi-
ciently smallε. This implies that the vector fromW s toWu

alongN(t) lies in exactly the same direction as∇Q0 (P (t));
i.e. it points inwards. Thus,Wu will lie insideW s nearP(t).
This is illustrated in Fig. 4, with the splitting (in reality of
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O(ε)) exaggerated for clarity. Looking at the direction of
flow alongW s andWu, it is clear that the flow in the channel
between them shall also be inwards. This causes fluid from
the outside to flow into the eddy. The flow remains incom-
pressible, and, therefore, the eddy compensates by growing
in size with time. Thus, ifM(t) > 0 for a warm eddy, it will
grow under the diffusive perturbation. On the other hand, if
M(t) < 0,W s will lie insideWu, and water would drain out
of the eddy, causing it to shrink. For a cold eddy, these con-
ditions are exactly reversed. Growing eddies are inclined to
be stable under a diffusive perturbation, while shrinking ed-
dies can be thought of as unstable, since they will drain out
all their constituent water and thereby disappear.

Now, suppose we can determine conditions under which
M(t) > 0 for a warm eddy. Since this will lead to a grow-
ing eddy, it makes sense to think of these asstability criteria,
causing the eddy to be more visible for a long period of time.
It must be emphasised that this is not stability in the conven-
tional sense, but in the sense of leading to eddy prominence
in the presence of small diffusion and forcing. We note that,
by our arguments,positiveterms in the Melnikov function
contribute towards eddy growth (stability) for awarmeddy.
Alternatively, negativeterms are associated withcold eddy
growth (stability). We shall now look for terms in the dif-
fusive and forcing contributions of the Melnikov function,
which provide the appropriate sign for eddy growth. Our
goal is to determine criteria which are universally valid for
both warm and cold eddies.

5 Diffusive criteria

With no loss of generality, we shall, in this section, assume
thatQ0(0, 0) = 0. If not, we can simply add the necessary
constant toQ0 to make it so; the dynamical equations re-
main satisfied since they only depend on derivatives ofQ0.
The unperturbed eddy boundary is then a portion of the level
curveQ0 = 0. From (9), we see that the diffusive contribu-
tion to the Melnikov function,Md , is a constant. This value
is, therefore, independent of the locationP(t) on the homo-
clinic at which the splitting distance is to be measured. We
note that the integrand of (9) contains two terms which re-
late to the Laplacian ofQ0 at an arbitrary pointP(τ) on the
homoclinic, and at the origin.

Let us first focus on the value of∇2Q0(0, 0). Since the
origin is a saddle point ofQ0, a local expansion ofQ0 near
the origin does not contain terms linear in(ξ, η). The leading
order terms are quadratic, and moreover, we can choose our
axes such that no mixed quadratic term appears. It may be
necessary to rotate the(ξ, η) coordinate system rigidly to do
so, which can be done with impunity, since the Laplacian
is invariant under a rotation of coordinates. Effectively, we
are choosing coordinates in such a fashion that theη-axis
points directly into the eddy (locally at the origin), such that
it bisects the angle formed by the tangents toW s andWu

(theglobalpicture of the eddy neednot have symmetry with
respect to theη-axis). Now, the coefficients ofξ2 and η2

must have opposite signs, since the origin is a saddle. Thus,
to leading order, we can expressQ0 near the origin by

Q0(ξ, η) = k
(
ξ2

− a2η2
)
,

wherek anda are some constants. The localQ0 contours are
clearly hyperbolic. The linesξ = ±aη constitute the level
‘curve’ Q0 = 0. Thus, the actual eddy boundary (itself, part
of the setQ0 = 0) locally can be represented by portions of
these two lines. In other words, the eddy boundary is tangen-
tial to ξ = ±aη at the origin, (see Fig. 5). We shall define
thepinch angle, θ , of the eddy to be the angle subtended at
the pinch-off point (the origin) by the eddy boundary. Ele-
mentary calculus gives tan(θ/2) = a, and, therefore, near
the origin,

Q0(ξ, η) = k
(
ξ2

− tan2 (θ/2) η2
)
.

By taking the Laplacian derivative,

∇
2Q0(ξ, η) = 2k

(
1 − tan2 (θ/2)

)
= 2k cosθ sec2 (θ/2) . (11)

The Laplacian at the origin can, thus, be quantified in terms
of the pinch angle and the strength ofQ0 (measured byk).
Notice also that for this choice ofQ0,

∂Q0

∂η
= −2k tan2 (θ/2) η.

For a warm eddy,Q0 must increase as one proceeds from the
origin in the positiveη direction, and, therefore,k < 0 corre-
sponds to a warm eddy (similarly,k > 0 is a cold eddy). For
the moment, imagine that the eddy is warm. Now, the pinch
angleθ satisfies 0≤ θ ≤ 1800, and by inspection of the
trigonometric function in (11), we can see that∇

2Q0(0,0)
is negative ifθ < 900. Since a negative sign appears in
front of ∇

2Q0 in the expression (9) forMd , this means that
if θ < 900, a positive contribution to the Melnikov function
results. Since, for a warm eddy, a positive Melnikov function
was argued to be stabilising in Sect. 4,pinch angles less than
900 contribute towards eddy growth. This statement is actu-
ally independent of whether a warm or cold eddy is chosen,
as a similar analysis of a cold eddy would confirm. Acute
pinch angled eddies are better equipped to survive than ob-
tuse pinch angled ones.

The Laplacian at an arbitrary pointP also appears in (9).
In order to determine the sign of this quantity, we adopt a
moving coordinate system. At each pointP on the eddy
boundary, letO be the centre of curvature of the homoclinic.
Note that locally, the homoclinic is a circular arc nearP ,
whose centre is atO, and radius is the radius of curvatureR,
(see Fig. 6). We shall make the simplifying assumption that
the eddy isconvex; O will always lie towards the interior of
the eddy from the perspective ofP . We choose polar coordi-
nates(r, φ) attached toO, whereφ is measured with respect
to the lineOP . Thus,P has coordinates(r, φ) = (R,0),
and we will think ofQ0 as also expressed in these coordi-
nates. The Laplacian operator is independent of the choice
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Fig. 5. Calculating∇2Q0 near the origin.

of coordinates, and hence, we can use its polar coordinate
representation

∇
2Q0 =

1

r

∂

∂r

(
r
∂Q0

∂r

)
+

1

r2

∂2Q0

∂φ2
.

When evaluating atP ≡ (R,0), since the homoclinic is lo-
cally a circular arc nearP which is representable byQ0 = 0,
we see that theφ derivative does not contribute (Q0 does not
change whenφ is varied). Thus,

∇
2Q0(P ) =

1

r

∂

∂r

(
r
∂Q0

∂r

) ∣∣∣∣∣
(R,0)

=
∂2Q0

∂r2
(R,0)+

1

R

∂Q0

∂r
(R,0)

Ther partial derivative is the derivative in the normally out-
ward direction from the eddy. With an abuse of notation, we
shall represent the above quantity asQ′′

0 + Q′

0/R, with the
understanding that the dash is the partial derivative with re-
spect tor, and that everything is evaluated at(r, φ) = (R, 0).
We caution thatP , O, R, r andφ are themselves dependent
on τ , the parametrisation along the homoclinic.

Once again, consider a warm eddy. Recalling that posi-
tive terms of the Melnikov function contribute towards eddy
growth, and noticing from (9) that∇2Q0(P ) appears as a
positive term, we would like to list geometric conditions
which provide positive contributions fromQ′′

0 +Q′

0/R. For
a warm eddy,Q′

0 < 0, and hence, the second term, con-
tributes the wrong sign.Large potential vorticity gradients
in the cross-eddy direction are detrimental to eddy stability.
Observe, however, that this effect is mitigated ifR is large.
Eddies which have larger radii of curvature are less inclined

O R

A

η

r

ξ

(ξ,η) = 0Q 

P

0

φ

Fig. 6. Calculating∇2Q0 at a point on the homoclinic.

to shrink. This statement is also true if one considers a cold
eddy.

In some senses, larger eddies will automatically have
larger radii (if one is comparing eddies which have the same
shape, but differ only in scale). Thus,larger eddies leak
less than smaller ones, all other factors being equal. This
statement appears to be at odds with linear stability analysis,
which suggests that larger eddies are more unstable (Flierl,
1988; Helfrich and Send, 1988). There are two reasons why
our results donot contradict these papers. Firstly, we are
addressing a specific form of perturbation that involves a dif-
fusive term in the dynamical equations (in contrast with a
linear stability analysis on a non-diffusive equation). Sec-
ondly, our model is barotropic, while baroclinic instabilities
are the dominating features in the cited studies. In fact, in
a sequence of papers, Dewar makes a strong case for Gulf
Stream eddies to be ‘barotropically dominated’, meaning that
the flow in lower layers of the ocean so strongly follows the
surface flow, thus making baroclinic instability the ‘wrong’
mechanism to examine (Dewar and Gailliard, 1994; Dewar
and Killworth, 1995; Dewar et al., 1999). Comments that
strongly pro-rotating lower flowsmayimprove stability also
appear in Flierl (1988); Helfrich and Send (1988). Finally,
we note thatobservationally, the Gulf Stream has many large
eddies which are long-lived, lending credence to our claim
that larger eddies are more stable (to diffusivity).

It remains to address the termQ′′

0. Suppose the function
Q0(r, 0) is plotted versusr. The graph cuts ther-axis at
r = R, and its slope is negative here for a warm eddy. The
concavity of this graph at this point represents the sign of
Q′′

0. If concave up, we haveQ′′

0 > 0: the correct contribution
towards eddy growth. This means that potential vorticity gra-
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dients are larger just inside the eddy than outside.If poten-
tial vorticity contours are more tightly packed just inside the
eddy (in comparison to just outside), this contributes towards
eddy growth. In effect, stronger potential vorticity gradients
just inside the eddy (in comparison to just outside), provide
a protection to the eddy waters. By addressing a cold eddy
and arguing analogously, it can be shown that this qualitative
requirement also holds for a cold eddy.

To summarise, we have shown that the following geomet-
ric features are conducive to (warmor cold) eddy growth un-
der small diffusivity:

– Pinch angleθ < 900

– Large radius of curvatureR

– Small potential vorticity gradientQ′

0 across eddy bound-
ary

– Potential vorticity contours more tightly packed inside
than outside the eddy

The opposite of each of these statements can be considered
contributory factors towards depletion of eddies. It must,
however, be noted that, in reality, the Melnikov function of
(8) and (9) includes suitablyintegratedfunctions, whereas
we have only addressed the sign of the integrand. It is quite
conceivable that the integrand take positive and negative val-
ues, while the integral is positive (say) for a warm eddy, and,
therefore, it will grow. In other words, the conditions we
have stated must be taken asqualitative, based simply upon
the contributions towards the Melnikov function taking the
appropriate sign, rather than wholly describing the Melnikov
function. Additionally, it must be cautioned that the eventual
behaviour of the eddy is governed by thecombinedeffect of
the conditions; a judgment may be impossible based on only,
for example, the pinch angle. Furthermore, as the eddy grows
or shrinks, its geometry will change dynamically, resulting in
changed behaviour.

An important consideration in using these qualitative con-
ditions comes from the fact that, when using ocean data, what
we have is theperturbedpicture corresponding to the dynam-
ics (3), rather than the unperturbed (1). In other words, the
picture we see will not be that of Fig. 2, but a perturbation
of this. The potential vorticity field that we observe would
be perturbed rather than unperturbed. Hence, in applying the
conditions, we are forced to rely onQ contours as opposed
to Q0 contours. SinceQ is a small perturbation ofQ0, we
would expect some closeness in the contours, validating this
approach.

6 Tendril formation

In addition to giving criteria on eddy growth, the Melnikov
function enables us to qualitatively explain the presence of
a tendril emanating from an eddy with one saddle point on
its boundary. Tendrils often appear in the potential vortic-
ity (or relevant scalar field) contours, as thin lobes which

η

ξ

W

Potential vorticity
contour

s
W

u

Fig. 7. A tendril of an eddy.

wrap around an essentially convex eddy structure (the exper-
imental paper by Voropayev et al. (1999) shows some tendril
structures). The presence of a tendril can be explained as
a direct consequence of the fact that the diffusive contribu-
tion to the Melnikov function,Md , is constant. If the forcing
contribution is momentarily ignored, the Melnikov function
would itself be constant, meaning that it is independent of the
choice of the pointP(t) at which the measurement between
Wu andW s is made. Now, since this constant is nonzero
generically, this implies thatW s andWu do not intersect for
any choice ofP(t); i.e. near any point on the homoclinic.
WhetherM is positive or negative, the consequence of con-
stancy is a thin channel which opens up along the boundary
of the eddy, as shown in Fig. 7. Fluid flows along this, in the
basic direction of the flow on the manifolds, which causes the
eddy to either grow or drain. In either case, however, trans-
port occurs between the interior and exterior waters, which
gradually homogenises the potential vorticity. Thus, interior
waters would have potential vorticity values close to the val-
ues along this channel. If viewing potential vorticity con-
tours, this should be visible as a tendril, exactly as observed
physically. Fig. 7 shows how an Eulerian potential vorticity
contour might appear in the presence of fluid transport of this
nature.

The distance expansion (7) shows that a tendril’s width
would be ofO(ε). The eddy entrains (resp. drains out) water
along the tendril, which forms the ‘feeding’ (resp. ‘excret-
ing’) organ of the eddy. The fluid velocities in the tendril are
not small (they areO(1) rather thanO(ε)), and hence, the
tendril stretches at a more rapid rate than the diffusive decay
of the eddy on the whole. Therefore, tendrils should be eas-
ily visible in the potential vorticity contours, as is borne out
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by observations (Voropayev et al., 1999).
We notice from equation (3) that the two processes which

govern thepotential vorticitytransport are advection and dif-
fusion (we are ignoring the forcing for the moment). In
the purelydiffusive process, the potential vorticity diffuses
throughout the domain in the direction of−∇Q, indepen-
dent of the flow. In addition, itadvects; potential vorticity
is carried by fluid particles following the flow. Note that
what we have discussed so far is an advective effect, which
causes fluid to flow into (the case of a growing eddy) or out
of (draining eddy) the eddy along a tendril. Perhaps para-
doxically, our advective process is created through adiffusive
splitting of the eddy boundary; diffusion and advection com-
bine to create these tendrils. If one imagines (3) as expressed
in nondimensional coordinates, it is easy to see that the pure
diffusive effect isO(ε) (occurs on a time-scale of size 1/ε),
whereas the advection velocity isO(1) (not small). How-
ever, since the advective channel (the tendril) has sizeO(ε),
the advectivefluxof potential vorticity has sizeO(ε) as well:
it alsooccurs on a time-scale of 1/ε. Thus, the advective and
diffusive fluxes of potential vorticity have the same magni-
tude. It is, therefore, unreasonable to ignore the advective
effect in comparison with the purely diffusive effect when
computing the potential vorticity balance for eddies.

A loose and intuitive understanding of tendrils could be
that they result from the exterior portions of the eddy not
being able to cope with the speed of rotation of the inte-
rior, with diffusivity providing retardation. However, our
interpretation enables a more geometric explanation for ten-
drils. Diffusivity destroys the eddy boundary and creates a
thin channel, along which an advective flux of potential vor-
ticity occurs. This is not something which has been stated
in the literature before; it is not an effect which can be ig-
nored in comparison to pure diffusion of potential vorticity,
with regard to eddy decay. This argument, in fact, works for
any two-dimensional flow (not necessarily oceanographic) in
which the relevant scalar quantity (not necessarily the poten-
tial vorticity) is subject to an advection-diffusion equation
with small diffusivity. The physical cause of such diffusion
may be the effects of small scale turbulence, viscosity, etc.
Therefore, our Melnikov approach provides a pleasing pos-
sible explanation for eddy tendrils, as resulting from diffu-
sivity breaking potential vorticity conservation.

Though the Melnikov approach provides information on
how the manifolds perturb, it should be noted that the Mel-
nikov function cannot describe how these manifolds behave
after they wrap once around the homoclinic; the development
is only valid for the first circuit of the manifolds around the
homoclinic. Beyond this, the manifolds may wrap around
and intersect in some complicated fashion, but any such ef-
fects would be at distancesO(1) away from the unperturbed
eddy boundary.

Should the eddy be defined by several saddle points on
its boundary (rather than just one, as we have assumed in
this paper), Melnikov functions would need to be calculated
for each piece of the boundary which connects saddle points.
However, the equations (9) and (10) cannot be applied in this

situation, and need modification for the fact that heteroclinic
trajectories (rather than homoclinic) form the separatrices of
interest. A constant value forMd is not obtained generically
for this heteroclinic case, and the quick argument for tendril
formation outlined above cannot be made. Therefore, it is
not clear whether this explanation generalises to more com-
plicated eddy boundaries.

7 Forcing contribution

We briefly consider how the forcing contribution of the Mel-
nikov function (10) can be analysed via geometric condi-
tions on the eddy boundary. SinceMf (t) is dependent on
t (unlike the diffusive contributionMd ), it is more diffi-
cult to obtain simple criteria for eddy growth. Therefore,
we will only inspect the geometry under several restric-
tions, which are nevertheless of relevance in the Gulf Steam.
Firstly, we shall specialise to standard models in which the
flow is approximately steady in a eastward moving frame,
as is commonly assumed (Pierrehumbert, 1991; del Castillo-
Negrete and Morrison, 1993; Pratt et al., 1995). Then, we
can setc2 = 0 (i.e., η = y). Secondly, we shall as-
sume that the additional forcing is steady and meridional, i.e.
f (x, y, t) = f (y) alone: a hypothesis which has been used
in other oceanographic transport analyses in which the jet
flow is mainly eastward (Poje and Haller, 1999). Thirdly, we
shall suppose that the most southerly point of a warm eddy
(or alternatively, the most northern point of a cold eddy) is its
pinch-off point. This is a feasible assumption if addressing
eddies in the process of pinching off from the Gulf Stream.

Under these conditions, the forcing contribution of the Mel-
nikov function of (10) becomes

Mf =

∫
∞

−∞

[f (ȳ(τ ))− f (0)] dτ,

where(ξ̄ , ȳ) is the parametrisation of the eddy boundary,η

is identified precisely withy. We have replaced the moving
frame forcingF with f , which additionally simplifies, since
it has neitherx nor t dependence. Under these simplifying
assumptions, the forcing contribution is a constant and easy
to analyse.

Consider the case, as usual, of a warm eddy. We have
ȳ(τ ) > 0 for all τ , since the pinch-off point hasy-coordinate
0, and is assumed to be the most southerly point on the eddy
boundary. Then, iff ′(y) > 0,Mf > 0 and the contribution
shall be a growing one. On the other hand, if we take a cold
eddy, we havēy(τ) < 0 for all τ , and iff ′(y) > 0, we would
obtainMf < 0: again the correct sign towards eddy growth.
Thus, for both warm and cold eddies,if f ′(y) > 0 over the
region of the eddy, then the eddy would be inclined to grow
under the influence of the forcing perturbation. Qualitatively
speaking,meridional forcing, which increases in the north-
ward variable, contributes to eddy growth. Even iff ′(y) < 0
on some length of the eddy boundary, and if the length over
which f ′(y) > 0 is sufficiently large, we shall obtain the
appropriate sign for eddy growth. As in our analysis of the
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previous section, we note that even if our qualitative con-
dition(s) should not be satisfied exactly, the eddy may still
grow if those qualities contribute sufficiently. We addition-
ally stress that, in reality, it is the combined effect ofall the
contributions (diffusive and forcing) which give the eddy its
growth instructions. Since the geometry changes dynami-
cally, it is possible that the eddy grows at some times, and
shrink at others.

8 Conclusions

This paper has analysed the qualitative structure of an eddy
(Eulerian definition) which contributes towards its growth,
and hence, its stability in a specific sense. All eddies of
length scales greater than that corresponding to turbulent
eddy diffusivities can be addressed through this viewpoint,
which, therefore, includes both mesoscale and submesoscale
eddies. The effective dynamics are considered a perturbation
of potential vorticity conserving flow; the perturbation result-
ing directly from the inclusion of diffusion (and an additional
small wind forcing) in the dynamical equation. Four qualita-
tive observations were obtained in Sect. 5 which are indica-
tive of eddy growth: (i) acute pinch-angle, (ii) small poten-
tial vorticity gradient across the eddy boundary, (iii) large ra-
dius of curvature of the eddy boundary, and (iv) the potential
vorticity contours more tightly packed just within the eddy
than outside. These conditions apply for both warm-core
and cold-core eddies. If the wind forcing is meridional and
steady, and the pinch-off point of the eddy is its most south-
ernly (resp. most northernly) point for a warm (resp. cold)
eddy, then another such contributory factor towards growth
is that the wind forcing increases in the northward direction.
The actual behaviour of the eddy depends upon the combina-
tion of all these factors.

Our eddy growth criteria are simple geometric conditions,
which should be verifiable if potential vorticity data of a suit-
able resolution is available. The power of these conditions is
that no knowledge of the velocity field is necessary. For the
diffusive contributions, in fact, the criteria dependonly on
potential vorticity contours! The conditions are based, in re-
ality, on the unperturbed potential vorticity contours, but for a
‘nearly’ potential vorticity conserving flow (such as believed
to be true of oceanic jets and eddies); the perturbed contours
could be expected to provide a sufficiently close approxima-
tion to the unperturbed ones. In any case, ours is a completely
new approach to eddy stability in the presence of small dif-
fusion, characterised by simple qualitative statements on the
geometry of the potential vorticity field.

Paldor (1999), in analysing linear stability of discontin-
uous, radially symmetric, barotropic vortices, states in his
abstract that if “the potential vorticity is continuous” at the
boundary, “details of potential vorticity become important.”
Though in a different context, it is instructive that in our
analysis of continuous potential vorticity models, it is ex-
actly such details of potential vorticity contours which arise
as conditions for eddy stability.

An added bonus from our arguments is that they give a
possible explanation for tendrils which are often observed
emanating from eddy structures. Diffusivity provides the
mechanism for the breaking of the eddy boundary into a thin
channel along the eddy boundary, where potential vorticity
is advected. The potential vorticity contours develop a ten-
dril along this channel as a result of the advection. Since
the advection velocities are not small, these tendrils should
be easily visible if diffusivity is present in the system. This
is a generic effect for eddies with exactly one saddle point
on their boundaries, and is to be expected whenever the con-
servation of a scalar field is broken through the inclusion of
small diffusivity.

Acknowledgement.Conversations with Leonid Kuznetsov are grate-
fully acknowledged. Both authors were supported in part by the
NSF through grant DMS-97-04906, and the ONR through grant N-
00014-92-J-1481.

References

Balasuriya, S., Vanishing viscosity in the barotropicβ-plane, J.
Math. Anal. Appl., 214, 128–150, 1997.

Balasuriya, S., Jones, C. K. R. T., and Sandstede, B., Viscous per-
turbations of vorticity-conserving flows and separatrix splitting,
Nonlinearity, 11, 47–77, 1998.

Biferale, L., Crisanti, A., Vergassola, M., and Vulpiani, A., Eddy
diffusivities in scalar transport, Phys. Fluids, 7, 2725–2734,
1995.

Caflisch, R. and Sammartino, M., Zero viscosity limit for analytic
solutions of the Navier-Stokes equation on a half-space. II. Con-
struction of the Navier-Stokes solution, Commun. Math. Phys.,
192, 463–491, 1998.

Brown, M. G. and Samelson, R. M., Particle motion in vorticity-
conserving, two-dimensional incompressible flow, Phys. Fluids,
6, 2875–2876, 1994.

del Castillo-Negrete, D. and Morrison, P. J., Chaotic transport by
Rossby waves in shear flow, Phys. Fluids A, 5, 948–965, 1993.

Dewar, W. K. and Gailliard, C., The dynamics of barotropically
dominated rings, J. Phys. Oceanography, 24, 5–29, 1994.

Dewar, W. K. and Killworth, P. D., On the stability of oceanic rings,
J. Phys. Oceanography, 25, 1467–1487, 1995.

Dewar, W. K., Killworth, P. D., and Blundell, J. R., Primitive-
equation instability of wide oceanic rings. Part II: Numerical
studies of ring stability, J. Phys. Oceanography, 29, 1744–1758,
1999.

Fannjiang, A. and Papanicolaou, G., Convection enhanced diffusion
for periodic flows, SIAM J. Appl. Math., 54, 333–408, 1994.

Fenichel, N., Persistence and smoothness of invariant manifolds of
flows, Indiana Univ. Math. J., 21, 193–226, 1971.

Flierl, G. R., On the instability of geostrophic vortices, J. Fluid
Mech., 197, 349–388, 1988.

Guckenheimer, J. and Holmes, P., Nonlinear Oscillations, Dynam-
ical Systems, and Bifurcation of Vector Fields, Springer, New
York, 1983.

Haidvogel, D. B., Robinson, A. R., and Booth, C. G. H., Eddy in-
duced dispersion and mixing, in Eddies in Marine Science, A. R.
Robinson, (Ed.), Springer, Berlin, 1983.

Haller, G. and Poje, A. C., Eddy growth and mixing in mesoscale



S. Balasuriya and C. K. R. T. Jones: Diffusive draining and growth of eddies 251

oceanographic flows, Nonlinear Processes in Geophys., 4, 223–
235, 1997.

Helfrich, K. R. and Send, U., Finite-amplitude evolution of two-
layer geostrophic vortices, J. Fluid Mech., 197, 331–348, 1988.

Hirsch, M. W., Pugh, C. C., and Shub, M., Invariant Manifolds
(Lecture Notes in Mathematics 583), Springer, Berlin, 1977.

Jones, S. W., Interaction of chaotic advection and diffusion, Chaos
Solitons Fractals, 4, 929–940, 1994.

Klapper, I., Shadowing and the role of small diffusivity in the
chaotic advection of scalars, Phys. Fluids A, 4, 861–864, 1992.

McWilliams, J. C., Gent, P. R., and Norton, N. J., The evolution of
balanced, low-mode vortices on theβ-plane, J. Phys. Oceanog-
raphy, 16, 838–855, 1986.

Mezić, I., Brady, J. F., and Wiggins, S., Maximal effective diffusiv-
ity for time-periodic incompressible flows, SIAM J. Appl. Math.,
56, 40–56, 1996.

Miller, P., Jones, C. K. R. T., Rogerson, A. M., and Pratt, L. J.,
Quantifying transport in numerically generated velocity fields,
Physica D, 110, 105–122, 1997.

Paldor, N., Linear instability of barotropic submesoscale coherent
vortices observed in the ocean, J. Phys. Oceanography, 29, 1442–
1452, 1999.

Pierrehumbert, R. T., Chaotic mixing of tracer and vorticity by mod-
ulated travelling waves, Geophys. Astrophys. Fluid Dyn., 58,
285–319, 1991.

Pedlosky, J., Geophysical Fluid Dynamics, Springer, New York,

1987.
Poje, A. C. and Haller, G., Geometry of cross-stream mixing in

a double-gyre ocean model, J. Phys. Oceanography, 29, 1649–
1665, 1999.
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