Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.699 IF 1.699
  • IF 5-year value: 1.559 IF 5-year
    1.559
  • CiteScore value: 1.61 CiteScore
    1.61
  • SNIP value: 0.884 SNIP 0.884
  • IPP value: 1.49 IPP 1.49
  • SJR value: 0.648 SJR 0.648
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 52 Scimago H
    index 52
  • h5-index value: 21 h5-index 21
Volume 11, issue 1
Nonlin. Processes Geophys., 11, 47-66, 2004
https://doi.org/10.5194/npg-11-47-2004
© Author(s) 2004. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

Special issue: Dedicated to Prof. A. D. Kirwan Jr. on the occasion of his...

Nonlin. Processes Geophys., 11, 47-66, 2004
https://doi.org/10.5194/npg-11-47-2004
© Author(s) 2004. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

  25 Feb 2004

25 Feb 2004

Lagrangian predictability of high-resolution regional models: the special case of the Gulf of Mexico

P. C. Chu1, L. M. Ivanov1,2, L. H. Kantha3, T. M. Margolina2, O. V. Melnichenko2, and Y. A. Poberezhny2 P. C. Chu et al.
  • 1Naval Ocean Analysis and Prediction Laboratory, Department of Oceanography, Naval Postgraduate School, Monterey, California, 93943, USA
  • 2Marine Hydrophysical Institute, the Ukrainian National Academy of Sciences, Kapitanskaya 2, Sevastopol, 99011, Ukraine
  • 3University of Colorado, Boulder, Colorado, 80309, USA

Abstract. The Lagrangian prediction skill (model ability to reproduce Lagrangian drifter trajectories) of the nowcast/forecast system developed for the Gulf of Mexico at the University of Colorado at Boulder is examined through comparison with real drifter observations. Model prediction error (MPE), singular values (SVs) and irreversible-skill time (IT) are used as quantitative measures of the examination. Divergent (poloidal) and nondivergent (toroidal) components of the circulation attractor at 50m depth are analyzed and compared with the Lagrangian drifter buoy data using the empirical orthogonal function (EOF) decomposition and the measures, respectively. Irregular (probably, chaotic) dynamics of the circulation attractor reproduced by the nowcast/forecast system is analyzed through Lyapunov dimension, global entropies, toroidal and poloidal kinetic energies. The results allow assuming exponential growth of prediction error on the attractor. On the other hand, the q-th moment of MPE grows by the power law with exponent of 3q/4. The probability density function (PDF) of MPE has a symmetrical but non-Gaussian shape for both the short and long prediction times and for spatial scales ranging from 20km to 300km. The phenomenological model of MPE based on a diffusion-like equation is developed. The PDF of IT is non-symmetric with a long tail stretched towards large ITs. The power decay of the tail was faster than 2 for long prediction times.

Publications Copernicus
Special issue
Download
Citation
Share