Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.699 IF 1.699
  • IF 5-year value: 1.559 IF 5-year
    1.559
  • CiteScore value: 1.61 CiteScore
    1.61
  • SNIP value: 0.884 SNIP 0.884
  • IPP value: 1.49 IPP 1.49
  • SJR value: 0.648 SJR 0.648
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 52 Scimago H
    index 52
  • h5-index value: 21 h5-index 21
Volume 12, issue 2
Nonlin. Processes Geophys., 12, 269–289, 2005
https://doi.org/10.5194/npg-12-269-2005
© Author(s) 2005. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

Special issue: Nonlinear plasma waves-solitons, periodic waves and...

Nonlin. Processes Geophys., 12, 269–289, 2005
https://doi.org/10.5194/npg-12-269-2005
© Author(s) 2005. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

  11 Feb 2005

11 Feb 2005

The dynamics of electron and ion holes in a collisionless plasma

B. Eliasson and P. K. Shukla B. Eliasson and P. K. Shukla
  • Institut für Theoretische Physik IV, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany

Abstract. We present a review of recent analytical and numerical studies of the dynamics of electron and ion holes in a collisionless plasma. The new results are based on the class of analytic solutions which were found by Schamel more than three decades ago, and which here work as initial conditions to numerical simulations of the dynamics of ion and electron holes and their interaction with radiation and the background plasma. Our analytic and numerical studies reveal that ion holes in an electron-ion plasma can trap Langmuir waves, due the local electron density depletion associated with the negative ion hole potential. Since the scale-length of the ion holes are on a relatively small Debye scale, the trapped Langmuir waves are Landau damped. We also find that colliding ion holes accelerate electron streams by the negative ion hole potentials, and that these streams of electrons excite Langmuir waves due to a streaming instability. In our Vlasov simulation of two colliding ion holes, the holes survive the collision and after the collision, the electron distribution becomes flat-topped between the two ion holes due to the ion hole potentials which work as potential barriers for low-energy electrons. Our study of the dynamics between electron holes and the ion background reveals that standing electron holes can be accelerated by the self-created ion cavity owing to the positive electron hole potential. Vlasov simulations show that electron holes are repelled by ion density minima and attracted by ion density maxima. We also present an extension of Schamel's theory to relativistically hot plasmas, where the relativistic mass increase of the accelerated electrons have a dramatic effect on the electron hole, with an increase in the electron hole potential and in the width of the electron hole. A study of the interaction between electromagnetic waves with relativistic electron holes shows that electromagnetic waves can be both linearly and nonlinearly trapped in the electron hole, which widens further due to the relativistic mass increase and ponderomotive force in the oscillating electromagnetic field. The results of our simulations could be helpful to understand the nonlinear dynamics of electron and ion holes in space and laboratory plasmas.

Publications Copernicus
Download
Citation