Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.699 IF 1.699
  • IF 5-year value: 1.559 IF 5-year
    1.559
  • CiteScore value: 1.61 CiteScore
    1.61
  • SNIP value: 0.884 SNIP 0.884
  • IPP value: 1.49 IPP 1.49
  • SJR value: 0.648 SJR 0.648
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 52 Scimago H
    index 52
  • h5-index value: 21 h5-index 21
Volume 12, issue 6
Nonlin. Processes Geophys., 12, 877–889, 2005
https://doi.org/10.5194/npg-12-877-2005
© Author(s) 2005. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

Special issue: Turbulent transport in geosciences

Nonlin. Processes Geophys., 12, 877–889, 2005
https://doi.org/10.5194/npg-12-877-2005
© Author(s) 2005. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

  03 Nov 2005

03 Nov 2005

Using magnetic fluids to simulate convection in a central force field in the laboratory

W.-G. Früh W.-G. Früh
  • School of Engineering and Physical Sciences, Heriot Watt University, Riccarton, Edinburgh, EH14 4AS, UK

Abstract. Large-scale convection in planetary or stellar interiors plays a significant role but it is difficult to reproduce the central force field of those systems in experimental studies. A technique to approximate a central force field through the magnetic field from magnets acting on a magnetic liquid is presented. The thermomagnetic convection in a spherical shell filled with a magnetic liquid is analyzed in the context of a terrestrial laboratory using a 2D Finite Element model. Two configurations of magnetic fields were investigated, one resulting in a radially decreasing force field, and the other in a radially increasing force field. The results suggest that, while the actual force field does not reproduce the central gravity in planetary interiors accurately, it captures the essential qualitative character of the flow unlike other terrestrial experiments, which were either dominated by gravity or by a cylindrical radial force field. It is therefore suggested that such an experiment would provide a useful tool to investigate thermal convection in planetary interiors.

Publications Copernicus
Download
Citation