Articles | Volume 15, issue 6
https://doi.org/10.5194/npg-15-977-2008
https://doi.org/10.5194/npg-15-977-2008
11 Dec 2008
 | 11 Dec 2008

Contribution of 3-D electrical resistivity tomography for landmines detection

M. Metwaly, G. El-Qady, J. Matsushima, S. Szalai, N. S. N. Al-Arifi, and A. Taha

Abstract. Landmines are a type of inexpensive weapons widely used in the pre-conflicted areas in many countries worldwide. The two main types are the metallic and non-metallic (mostly plastic) landmines. They are most commonly investigated by magnetic, ground penetrating radar (GPR), and metal detector (MD) techniques. These geophysical techniques however have significant limitations in resolving the non-metallic landmines and wherever the host materials are conductive. In this work, the 3-D electric resistivity tomography (ERT) technique is evaluated as an alternative and/or confirmation detection system for both landmine types, which are buried in different soil conditions and at different depths. This can be achieved using the capacitive resistivity imaging system, which does not need direct contact with the ground surface. Synthetic models for each case have been introduced using metallic and non-metallic bodies buried in wet and dry environments. The inversion results using the L1 norm least-squares optimization method tend to produce robust blocky models of the landmine body. The dipole axial and the dipole equatorial arrays tend to have the most favorable geometry by applying dynamic capacitive electrode and they show significant signal strength for data sets with up to 5% noise. Increasing the burial depth relative to the electrode spacing as well as the noise percentage in the resistivity data is crucial in resolving the landmines at different environments. The landmine with dimension and burial depth of one electrode separation unit is over estimated while the spatial resolutions decrease as the burial depth and noise percentage increase.

Download