Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.699 IF 1.699
  • IF 5-year value: 1.559 IF 5-year
    1.559
  • CiteScore value: 1.61 CiteScore
    1.61
  • SNIP value: 0.884 SNIP 0.884
  • IPP value: 1.49 IPP 1.49
  • SJR value: 0.648 SJR 0.648
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 52 Scimago H
    index 52
  • h5-index value: 21 h5-index 21
Volume 17, issue 6
Nonlin. Processes Geophys., 17, 651–661, 2010
https://doi.org/10.5194/npg-17-651-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
Nonlin. Processes Geophys., 17, 651–661, 2010
https://doi.org/10.5194/npg-17-651-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 19 Nov 2010

Research article | 19 Nov 2010

Markov chain analysis of regional climates

S. Mieruch1, S. Noël1, H. Bovensmann1, J. P. Burrows1, and J. A. Freund2 S. Mieruch et al.
  • 1Institute of Environmental Physics (IUP), University of Bremen, Otto-Hahn Allee 1, 28359 Bremen, Germany
  • 2Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky Str. 9-11, 26111 Oldenburg, Germany

Abstract. We present a novel method for regional climate classification that is based on coarse-grained categorical representations of multivariate climate anomalies and a subsequent Markov chain analysis. From the estimated transition matrix several descriptors, such as persistence, recurrence time and entropy, are derived. These descriptors characterise dynamic properties of regional climate anomalies and are connected with fundamental concepts from nonlinear physics like residence times, relaxation process and predictability. Such characteristics are useful for a comparative analysis of different climate regions and, in the context of global climate change, for a regime shift analysis.

We apply the method to the bivariate set of water vapour and temperature anomalies of two regional climates, the Iberian Peninsula and the islands of Hawaii in the central Pacific Ocean. Through the Markov chain analysis and via the derived descriptors we find significant differences between the two climate regions. Since anomalies are departures from seasonal and long term components, these differences relate to differences in the short term stability of both regional climates.

Publications Copernicus
Download
Citation