Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.699 IF 1.699
  • IF 5-year value: 1.559 IF 5-year
    1.559
  • CiteScore value: 1.61 CiteScore
    1.61
  • SNIP value: 0.884 SNIP 0.884
  • IPP value: 1.49 IPP 1.49
  • SJR value: 0.648 SJR 0.648
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 52 Scimago H
    index 52
  • h5-index value: 21 h5-index 21
Volume 18, issue 5
Nonlin. Processes Geophys., 18, 563-572, 2011
https://doi.org/10.5194/npg-18-563-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Multifractals and intermittent turbulence in the solar-terrestrial...

Nonlin. Processes Geophys., 18, 563-572, 2011
https://doi.org/10.5194/npg-18-563-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 05 Sep 2011

Research article | 05 Sep 2011

Similarities between extreme events in the solar-terrestrial system by means of nonextensivity

G. Balasis1, C. Papadimitriou1,2, I. A. Daglis1, A. Anastasiadis1, I. Sandberg1, and K. Eftaxias3 G. Balasis et al.
  • 1Institute for Space Applications and Remote Sensing, National Observatory of Athens, Greece
  • 2Section of Astrophysics, Astronomy and Mechanics, Department of Physics, University of Athens, Greece
  • 3Section of Solid State Physics, Department of Physics, University of Athens, Greece

Abstract. The dynamics of complex systems are founded on universal principles that can be used to describe disparate problems ranging from particle physics to economies of societies. A corollary is that transferring ideas and results from investigators in hitherto disparate areas will cross-fertilize and lead to important new results. In this contribution, we investigate the existence of a universal behavior, if any, in solar flares, magnetic storms, earthquakes and pre-seismic electromagnetic (EM) emissions, extending the work recently published by Balasis et al. (2011a). A common characteristic in the dynamics of the above-mentioned phenomena is that their energy release is basically fragmentary, i.e. the associated events are being composed of elementary building blocks. By analogy with earthquakes, the magnitude of the magnetic storms, solar flares and pre-seismic EM emissions can be appropriately defined. Then the key question we can ask in the frame of complexity is whether the magnitude distribution of earthquakes, magnetic storms, solar flares and pre-fracture EM emissions obeys the same law. We show that these apparently different extreme events, which occur in the solar-terrestrial system, follow the same energy distribution function. The latter was originally derived for earthquake dynamics in the framework of nonextensive Tsallis statistics.

Publications Copernicus
Special issue
Download
Citation
Share