Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.699 IF 1.699
  • IF 5-year value: 1.559 IF 5-year
    1.559
  • CiteScore value: 1.61 CiteScore
    1.61
  • SNIP value: 0.884 SNIP 0.884
  • IPP value: 1.49 IPP 1.49
  • SJR value: 0.648 SJR 0.648
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 52 Scimago H
    index 52
  • h5-index value: 21 h5-index 21
Volume 18, issue 6
Nonlin. Processes Geophys., 18, 841–847, 2011
https://doi.org/10.5194/npg-18-841-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Recent advances in data analysis and modeling of nonlinear...

Nonlin. Processes Geophys., 18, 841–847, 2011
https://doi.org/10.5194/npg-18-841-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 17 Nov 2011

Research article | 17 Nov 2011

The effect of a localized geothermal heat source on deep water formation

M. Vincze, A. Várai, E. Barsy, and I. M. Jánosi M. Vincze et al.
  • von Kármán Laboratory for Environmental Flows, Eötvös Loránd University, Pázmány P. s. 1/A, 1117 Budapest, Hungary

Abstract. In a simplified two-dimensional model of a buoyancy-driven overturning circulation, we numerically study the response of the flow to a small localized heat source at the bottom. The flow is driven by differential thermal forcing applied along the top surface boundary. We evaluate the steady state solutions versus the temperature difference between the two ends of the water surface in terms of different characteristic parameters that properly describe the transition from a weak upper-layer convection state to a robust full-depth deep convection. We conclude that a small additional bottom heat flux underneath the "cold" end of the basin is able to initiate full-depth convection even when the surface heat forcing alone is not sufficient to maintain this state.

Publications Copernicus
Download
Citation