Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.699 IF 1.699
  • IF 5-year value: 1.559 IF 5-year
    1.559
  • CiteScore value: 1.61 CiteScore
    1.61
  • SNIP value: 0.884 SNIP 0.884
  • IPP value: 1.49 IPP 1.49
  • SJR value: 0.648 SJR 0.648
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 52 Scimago H
    index 52
  • h5-index value: 21 h5-index 21
Volume 2, issue 3/4
Nonlin. Processes Geophys., 2, 158–177, 1995
https://doi.org/10.5194/npg-2-158-1995
© Author(s) 1995. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

Special issue: Complex space-time geophysical structures

Nonlin. Processes Geophys., 2, 158–177, 1995
https://doi.org/10.5194/npg-2-158-1995
© Author(s) 1995. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

  31 Dec 1995

31 Dec 1995

Organisation of joints and faults from 1-cm to 100-km scales revealed by optimized anisotropic wavelet coefficient method and multifractal analysis

G. Ouillon1,2,3, D. Sornette3, and C. Castaing2 G. Ouillon et al.
  • 1Institut de Géodynamique, CNRS URA 1279, Rue A. Einstein, Sophia Antipolis, 06560 Vabonne, France
  • 2BRGM, Avenue de Concyr, Orléans-La Source (Loiret), B.P.6009, 45060 Orléans Cedex 2, France
  • 3Laboratoire de Physique de la Matiére Condensée, CNRS URA 190, Université de Nice-Sophia Antipolis, B.P.70 Parc Valrose, 06108 Nice Cedex 2, France

Abstract. The classical method of statistical physics deduces the macroscopic behaviour of a system from the organization and interactions of its microscopical constituents. This kind of problem can often be solved using procedures deduced from the Renormalization Group Theory, but in some cases, the basic microscopic rail are unknown and one has to deal only with the intrinsic geometry. The wavelet analysis concept appears to be particularly adapted to this kind of situation as it highlights details of a set at a given analyzed scale. As fractures and faults generally define highly anisotropic fields, we defined a new renormalization procedure based on the use of anisotropic wavelets. This approach consists of finding an optimum filter will maximizes wavelet coefficients at each point of the fie] Its intrinsic definition allows us to compute a rose diagram of the main structural directions present in t field at every scale. Scaling properties are determine using a multifractal box-counting analysis improved take account of samples with irregular geometry and finite size. In addition, we present histograms of fault length distribution. Our main observation is that different geometries and scaling laws hold for different rang of scales, separated by boundaries that correlate well with thicknesses of lithological units that constitute the continental crust. At scales involving the deformation of the crystalline crust, we find that faulting displays some singularities similar to those commonly observed in Diffusion- Limited Aggregation processes.

Publications Copernicus
Download
Citation