Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.699 IF 1.699
  • IF 5-year value: 1.559 IF 5-year
    1.559
  • CiteScore value: 1.61 CiteScore
    1.61
  • SNIP value: 0.884 SNIP 0.884
  • IPP value: 1.49 IPP 1.49
  • SJR value: 0.648 SJR 0.648
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 52 Scimago H
    index 52
  • h5-index value: 21 h5-index 21
Volume 2, issue 3/4
Nonlin. Processes Geophys., 2, 280–289, 1995
https://doi.org/10.5194/npg-2-280-1995
© Author(s) 1995. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

Special issue: Complex space-time geophysical structures

Nonlin. Processes Geophys., 2, 280–289, 1995
https://doi.org/10.5194/npg-2-280-1995
© Author(s) 1995. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

  31 Dec 1995

31 Dec 1995

Asymmetry of wind waves studied in a laboratory tank

I. A. Leykin1, M. A. Donelan2, R. H. Mellen3, and D. J. McLaughlin1 I. A. Leykin et al.
  • 1Northeastern University, Boston, MA 02115, USA
  • 2National Water Research Institute, Canada Centre for Inland Waters, Burlington, Ontario L7R 4A6, Canada
  • 3Marine Sciences Institute, The University of Connecticut, Groton, Connecticut 06340, USA

Abstract. Asymmetry of wind waves was studied in laboratory tank tinder varied wind and fetch conditions using both bispectral analysis of wave records and third-order statistics of the surface elevation. It is found skewness S (the normalized third-order moment of surface elevation describing the horizontal asymmetry waves) varies only slightly with the inverse wave u*/Cm (where u* is the air friction velocity and Cm is phase speed of the dominant waves). At the same time asymmetry A, which is determined from the Hilbert transform of the wave record and characterizes the skewness of the rate of change of surface elevation, increase consistently in magnitude with the ratio u*/Cm. This suggests that nonlinear distortion of the wave profile determined by the degree of wind forcing and is a sensitive indicator of wind-wave interaction processes. It is shown that the asymmetric profile of waves can described within the frameworks of the nonlinear nonspectral concept (Plate, 1972; Lake and Yuen, 197 according to which the wind-wave field can be represented as a coherent bound-wave system consisting mainly of dominant component w. and its harmonics propagating with the same speed C. , as observed by Ramamonjiaris and Coantic (1976). The phase shift between o). harmonics is found and shown to increase with the asymmetry of the waves.

Publications Copernicus
Download
Citation