Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.129 IF 1.129
  • IF 5-year value: 1.519 IF 5-year
    1.519
  • CiteScore value: 1.54 CiteScore
    1.54
  • SNIP value: 0.798 SNIP 0.798
  • SJR value: 0.610 SJR 0.610
  • IPP value: 1.41 IPP 1.41
  • h5-index value: 21 h5-index 21
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 48 Scimago H
    index 48
Volume 20, issue 4
Nonlin. Processes Geophys., 20, 563-570, 2013
https://doi.org/10.5194/npg-20-563-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
Nonlin. Processes Geophys., 20, 563-570, 2013
https://doi.org/10.5194/npg-20-563-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 31 Jul 2013

Research article | 31 Jul 2013

Clifford algebra-based structure filtering analysis for geophysical vector fields

Z. Yu1,2, W. Luo1, L. Yi1, Y. Hu3, and L. Yuan1,2 Z. Yu et al.
  • 1Key Laboratory of Virtual Geographic Environment, Ministry of Education, Nanjing Normal University, No.1 Wenyuan Road, Nanjing, China
  • 2Jiangsu Provincial Key Laboratory for Numerical Simulation of Large Scale Complex Systems, Nanjing Normal University, No.1 Wenyuan Road, Nanjing, China
  • 3Department of Computer Science and Technology, Nanjing Normal University, No.1 Wenyuan Road, Nanjing, China

Abstract. A new Clifford algebra-based vector field filtering method, which combines amplitude similarity and direction difference synchronously, is proposed. Firstly, a modified correlation product is defined by combining the amplitude similarity and direction difference. Then, a structure filtering algorithm is constructed based on the modified correlation product. With custom template and thresholds applied to the modulus and directional fields independently, our approach can reveal not only the modulus similarities but also the classification of the angular distribution. Experiments on exploring the tempo-spatial evolution of the 2002–2003 El Niño from the global wind data field are used to test the algorithm. The results suggest that both the modulus similarity and directional information given by our approach can reveal the different stages and dominate factors of the process of the El Niño evolution. Additional information such as the directional stability of the El Niño can also be extracted. All the above suggest our method can provide a new powerful and applicable tool for geophysical vector field analysis.

Publications Copernicus
Download
Citation
Share