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Abstract. The goal of this study is to evaluate a version of
the ensemble-variational data assimilation approach (EnVar)
for possible replacement of 4D-Var at Environment Canada
for global deterministic weather prediction. This implemen-
tation of EnVar relies on 4-D ensemble covariances, obtained
from an ensemble Kalman filter, that are combined in a verti-
cally dependent weighted average with simple static covari-
ances. Verification results are presented from a set of data as-
similation experiments over two separate 6-week periods that
used assimilated observations and model configuration very
similar to the currently operational system. To help interpret
the comparison of EnVar versus 4D-Var, additional experi-
ments using 3D-Var and a version of EnVar with only 3-D
ensemble covariances are also evaluated. To improve the rate
of convergence for all approaches evaluated (including En-
Var), an estimate of the cost function Hessian generated by
the quasi-Newton minimization algorithm is cycled from one
analysis to the next.

Analyses from EnVar (with 4-D ensemble covariances)
nearly always produce improved, and never degraded, fore-
casts when compared with 3D-Var. Comparisons with 4D-
Var show that forecasts from EnVar analyses have either sim-
ilar or better scores in the troposphere of the tropics and the
winter extra-tropical region. However, in the summer extra-
tropical region the medium-range forecasts from EnVar have
either similar or worse scores than 4D-Var in the troposphere.
In contrast, the 6 h forecasts from EnVar are significantly bet-
ter than 4D-Var relative to radiosonde observations for both
periods and in all regions. The use of 4-D versus 3-D en-
semble covariances only results in small improvements in
forecast quality. By contrast, the improvements from using
4D-Var versus 3D-Var are much larger. Measurement of the
fit of the background and analyzed states to the observations

suggests that EnVar and 4D-Var can both make better use of
observations distributed over time than 3D-Var. In summary,
the results from this study suggest that the EnVar approach is
a viable alternative to 4D-Var, especially when the simplicity
and computational efficiency of EnVar are considered. Ad-
ditional research is required to understand the seasonal de-
pendence of the difference in forecast quality between EnVar
and 4D-Var in the extra-tropics.

1 Introduction

For more than a decade, numerical weather prediction
(NWP) centers have been increasingly adopting the four-
dimensional variational data assimilation (4D-Var) approach
for global (Rabier et al., 2000; Rabier, 2005; Rawlins et
al., 2007; Gauthier et al., 2007) and regional (Honda et al.,
2005; Tanguay et al., 2012) deterministic prediction. This
has contributed to significant improvements in analysis and
forecast quality. During the same period, ensemble data as-
similation approaches, including the Ensemble Kalman Fil-
ter (EnKF; Houtekamer and Mitchell, 1998; Burgers et al.,
1998), have become increasingly used for initializing en-
semble forecasts (Charron et al., 2010) and for providing
flow-dependent background-error statistics used to produce
deterministic analyses (Clayton et al., 2012). Both 4D-Var
and ensemble data assimilation approaches rely on output
from forecast models, though in different ways, within the
data assimilation procedure when using observations to com-
pute a correction to a short-term forecast (i.e., the back-
ground state). Several past studies have compared these ap-
proaches from both theoretical (Lorenc, 2003; Kalnay et al.,
2007; Gustafsson, 2007) and empirical (Caya et al., 2005;
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Whitaker et al., 2009; Buehner et al., 2010a, b; Miyoshi et
al., 2010; Zhang et al., 2011) perspectives. The present study
focuses on a comparison between 4D-Var and another vari-
ational approach, called ensemble-variational data assimi-
lation (EnVar), which relies heavily on the ensembles pro-
duced by an ensemble data assimilation approach, the EnKF
(Houtekamer and Mitchell, 2005; Houtekamer et al., 2009)
in our case. The comparison is made in a context very close
to that of the systems currently operational at Environment
Canada.

To make more efficient use of the limited resources avail-
able and accelerate the development of future NWP systems,
there is currently an effort at Environment Canada to move
towards a more unified approach for data assimilation. The
current situation of developing separate state-of-the-art as-
similation approaches and software libraries for the deter-
ministic and ensemble prediction systems will gradually be
replaced by systems that all make effective use of ensem-
bles and share large amounts of computer code for common
tasks. Consequently, any improvements made to the quality
of the ensembles should benefit both the deterministic and
ensemble prediction systems. The EnVar approach uses 4-
D ensemble covariances in a way that essentially replaces
the use of tangent-linear and adjoint versions of the forecast
model in 4D-Var. The use of 4-D ensemble covariances in
EnVar is also similar to how they are used within the EnKF
itself (Hunt et al., 2004; Houtekamer and Mitchell, 2005;
Buehner et al., 2010a). Since a significant effort is required
to develop and maintain computationally efficient tangent-
linear and adjoint models, replacing 4D-Var with an EnVar
approach would significantly reduce the effort required to
further develop the data assimilation component of the de-
terministic prediction systems.

The goal of this study is to evaluate a version of En-
Var for possible replacement of 4D-Var in the operational
global deterministic prediction system (GDPS) at Environ-
ment Canada. The configurations of the systems included in
this study were chosen specifically with this goal in mind.
For example, the horizontal resolution of the analysis incre-
ment in EnVar is chosen to match the resolution of the op-
erational EnKF, even though this resolution is higher than
the analysis increment in 4D-Var. In the context of compar-
ing approaches for potential operational use, such a differ-
ence in resolution is appropriate because of the significantly
lower computational cost of EnVar as compared with 4D-Var.
Similarly, no experiments were performed using 4D-Var in
combination with an ensemble-based covariance matrix (as
in the 4D-Var-Benkf experiment by Buehner et al. (2010a, b)
and the system currently operational at the United Kingdom
Meteorological Office, described by Clayton et al., 2012) in-
stead of the simple static background-error covariance ma-
trix. While such an approach provides improved background-
error covariances for 4D-Var, it does not result in any reduc-
tion in the effort required to maintain and develop the sys-
tem. Finally, the direct use of EnKF analyses for initializing

deterministic forecasts was also not tested, since it is not cur-
rently being considered as a possible replacement of 4D-Var.
This is mostly because the horizontal spatial resolution, ver-
tical extent, and volume of assimilated observations are all
significantly lower in the EnKF than in the deterministic sys-
tem. In addition, an approach was evaluated for accelerating
the minimization of the EnVar cost function by cycling an
estimate of the Hessian generated by the quasi-Newton min-
imization algorithm.

The previous study of Buehner et al. (2010a, b) does in-
clude comparisons with the approaches just mentioned in a
context where all experiments use the same spatial resolu-
tion (for the analysis increment), model configuration and
set of assimilated observations. In that study, using ensemble
covariances in 4D-Var resulted in improved forecast scores
when compared with either 4D-Var using simple static co-
variances or the EnKF ensemble mean analysis. This is also
consistent with the results obtained in an idealized context
with a low-dimensional toy model by Fairbairn et al. (2013).
A similar comparison of 4D-Var using either simple static
background-error covariances or ensemble covariances by
Kuhl et al. (2013) also showed significant forecast improve-
ments from using the ensemble covariances.

In the next section the configurations of the variational
data assimilation approaches evaluated in this study are de-
scribed. Verification results from a set of data assimilation
experiments with the full set of operationally assimilated ob-
servations are presented in Sect. 3. In Sect. 4, some simple
diagnostic results are presented that demonstrate the ability
of EnVar to represent the temporal dimension within the as-
similation window in comparison with other approaches. Fi-
nally, some conclusions are given in Sect. 5.

2 Data assimilation approaches evaluated

Several data assimilation approaches were chosen for eval-
uation with the goal of understanding how EnVar com-
pares with 4D-Var in the context of operational global de-
terministic weather prediction. Each approach was tested in
6 week data assimilation experiments for each of two seasons
with the same configuration of the forecast model and the
same set of assimilated observations, both being very simi-
lar to the system implemented operationally at Environment
Canada on 13 February 2013. Briefly, the Global Environ-
mental Multiscale (GEM) forecast model is configured with
a uniform horizontal latitude-longitude grid with 1024 by
800 grids points (resulting in a grid spacing of about 25 km
at 50◦ latitude) and 80 vertical levels with the top level at
0.1 hPa (CMC, 2013). The operationally assimilated obser-
vations include those from radiosondes; aircraft; wind pro-
filers; land stations, ships and buoys (near-surface observa-
tions); scatterometers; atmospheric motion vectors; satellite-
based radio occultation; and microwave and infrared satellite
sounders and imagers. All experiments use an incremental
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approach to generate an analysis at the spatial resolution of
the forecast model from an analysis increment computed on
a lower resolution horizontal grid and a slightly different set
of vertical levels. The 4D-Var experiment uses 2 iterations
of an outer-loop during which the high-resolution forecast
model is integrated to obtain an updated trajectory for the
tangent-linear and adjoint models and an updated measure
of the fit to the observations. The first inner-loop minimiza-
tion uses 35 iterations and the second uses 30 iterations. The
other assimilation approaches all use only a single inner-loop
minimization with 70 iterations.

EnVar is tested using 4-D background-error covariances
obtained from 192 EnKF background ensemble members
stored every hour over the 6 h assimilation window, as they
are also used in the EnKF version that was also imple-
mented operationally on 13 February 2013. To evaluate the
impact of using 4-D covariances, another experiment using
only the 3-D covariances valid at the centre of the assim-
ilation window was performed. When discussing these ex-
periments the terms 4D-EnVar and 3D-EnVar will be used
to distinguish between the two, however, elsewhere the sim-
pler name of EnVar is used to refer to the experiment with
4-D covariances. Note that 3D-EnVar is similar to the ap-
proach called 3D-Var-Benkf and 4D-EnVar is similar to the
approach called En-4D-Var by Buehner et al. (2010a, b).

In addition, a 3D-Var experiment is also included in
the comparisons. The same static and highly parameterized
background-error covariances are used in both 3D-Var and
4D-Var. These are generated using lagged forecast differ-
ences (48 h forecasts minus 24 h forecasts valid at the same
time) following the so-called “NMC method” (Parrish and
Derber, 1992; see Charron et al., 2012 for details). The hor-
izontal resolution for the analysis increment in the 3D-Var
and both EnVar experiments is chosen to match the resolu-
tion of the EnKF, which uses a Gaussian grid with 600 by
300 grid points (grid spacing of about 66 km at the equator).
The 4D-Var experiment computes an analysis increment at
lower resolution on a Gaussian grid with 400 by 200 grid
points (grid spacing of about 100 km at the equator), as in
the system that became operational on 13 February 2013.

The EnVar experiments in this study use hybrid
background-error covariances (Hamill and Snyder, 2000)
that are a weighted average of the flow-dependant 4-D (or
3-D) ensemble covariances (Benkf) and the same static co-
variances used in 3D-Var and 4D-Var (Bnmc). The approach
for incorporating spatially localized ensemble covariances
within a preconditioned cost function, including the spatial
localization parameters used, are the same as described by
Buehner et al. (2010a). Additional details related to the ap-
proach are given by Bishop et al. (2011). Unlike the study of
Buehner et al. (2010a), the ensemble covariances are com-
bined with the static covariances by computing the analysis
increment

1x = β
1/2
nmc(levelk) B

1/2
nmcξnmc+ β

1/2
enkf(levelk) B

1/2
enkfξenkf, (1)

where the twoβ factors control the contributions ofBnmc
andBenkf as a function of the vertical level, and the vectors
ξnmc andξenkf are the portions of the control vector associ-
ated with each covariance matrix. The complete control vec-
tor

ξ =

[
ξnmc
ξenkf

]
(2)

is used by the minimization algorithm to find the minimum
of the preconditioned cost function

J (ξ) =
1

2
ξTξ +

1

2

[
H

(
xb

)
+ H1x (ξ) − y

]T

R−1
[
H

(
xb

)
+ H1x (ξ) − y

]
, (3)

whereH(xb) is the nonlinear observation operator applied
to the background state trajectory,H is the tangent linear
version ofH (•), y is the vector containing all observations
being assimilated andR is the observation-error covariance
matrix. The analysis increment,1x, in Eq. (3) is obtained
from the control vector using Eqs. (1) and (2). The analy-
sis,xa, is then obtained by summing the analysis increment
and the background state, all valid at the middle of the 6 h
assimilation window.

Because the top model level in the operational EnKF
(2 hPa) is lower than the top model level of the GDPS
(0.1 hPa), the ensemble covariances are not available for the
upper portion of the GDPS levels. To overcome this, the
weighting between the two matrices (controlled by theβ fac-
tors in Eq.1) depends on the vertical level and gradually
changes from being equal (βnmc = βenkf = 0.5) from the sur-
face up to about 40 hPa to become fully weighted towards
theBnmc matrix (βnmc = 1.0,βenkf = 0.0) above 10 hPa and
up to the top level of the GDPS (see Fig. 1 in which the ver-
tical model co-ordinate very approximately equals the pres-
sure divided by the surface pressure, more details on this re-
lationship in CMC, 2013). Consequently, above 10 hPa the
EnVar analysis is nearly equivalent to 3D-Var and therefore
cannot be expected to be as good as 4D-Var. A brief summary
of the four different data assimilation approaches is given in
Table 1. An alternative weighting between the two covari-
ances matrices was tested in preliminary experiments with
more weight given toBenkf in the troposphere (βnmc = 0.25,
βenkf = 0.75). The resulting forecast scores were similar or
slightly worse than when using equal weighting and are not
included in this study. It should be noted that some additional
vertical covariance localization is imposed by vertically vary-
ing the weighting between the two covariance matrices. This
results from the assumption that the increments from the two
matrices are independent of each other. However, the use of
a gradual variation in the weightings, spread out over many
model levels, minimizes this effect.
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Fig. 1. The hybrid covariance weights used in computing the av-
erage of theBenkf (line with circles) andBnmc (line with crosses)
covariance matrices for the EnVar experiments.

Like 4D-Var, the EnVar approach could potentially also
use an outer-loop to provide an updated measure of the fit
to observations for computing the cost function. This can be
accomplished by producing an analysis at the beginning of
the assimilation window for initializing a model integration
over the window. However, since the increment is temporally
constant above 10 hPa and below this level the increment still
has a significant contribution from the static background-
error covariances that are temporally constant, the analysis
increment computed at the beginning of the window is not
fully appropriate for that time. Consequently, significant er-
rors would result from starting a model integration from the
EnVar analysis at the beginning of the assimilation window.
Nevertheless, such an approach was attempted with the re-
sult of significantly degraded forecast scores that are also not
included in this study.

It should be noted that the computational cost of the En-
Var approach is currently significantly lower than the cost of
4D-Var at Environment Canada. Since the EnKF is already
an operational system, the cost of producing the ensemble of
background states used in both the EnKF and EnVar is not
considered as being associated with EnVar. Given this fact,
the cost of only producing an EnVar analysis requires less
than one fifth of the time and less than half of the number of
processors as compared with 4D-Var, even though the anal-
ysis increment horizontal resolution is significantly higher in
EnVar than in 4D-Var.

The minimization algorithm M1QN3 (Gilbert and
Lemaréchal, 1989) is used in the operational system and in
the experiments performed for this study. This algorithm is
a limited-memory quasi-Newton approach that generates an
approximate estimate of the cost function Hessian during
the minimization to accelerate convergence. The operational

4D-Var and all of the experiments included in this study use
the cost function Hessian estimated during the previous anal-
ysis cycle to initialize the Hessian for the current analysis.
While being very efficient and simple to implement, this ap-
proach results in a significantly improved convergence of the
minimization problem when using a fixed number of itera-
tions. The full Hessian depends on the specified background-
error covariances, observation error covariances and the ob-
servation operator. Therefore, if these three quantities remain
relatively similar over time, the strategy of cycling the Hes-
sian from one analysis time to the next can be beneficial, with
negligible additional computational cost. Figure 2 shows the
impact of cycling the Hessian in the context of EnVar. For a
single analysis time well after the beginning of the data as-
similation experiment, the minimization is performed both
with (dashed line) and without (solid line) the estimate from
the previous analysis used to initialize the Hessian. Even
though the background-error covariances change each anal-
ysis time in EnVar, the impact on the rate of convergence of
using the Hessian from the previous analysis is clearly posi-
tive. The total cost function (Fig. 2a) is reduced much more
rapidly with Hessian preconditioning, but the value is nearly
the same as without Hessian preconditioning after 70 iter-
ations. The impact on the total observation cost function
(Fig. 2b) and the cost function component associated with
only the satellite radiance observations (Fig. 2c) and only the
aircraft observations (Fig. 2d) are also shown. This shows
that the fit of the analysis to the observations, most noticeably
for the aircraft observations, is improved when using Hessian
preconditioning. Consequently, even in EnVar in which all
three quantities (background- and observation-error covari-
ances and the observation operator) change from one anal-
ysis time to the next, these changes are small enough such
that the strategy of cycling the Hessian estimated by the min-
imization algorithm is still effective.

3 Forecast verification results

In this section, forecast verification scores are presented from
using analyses produced by 4D-Var, 3D-Var and versions of
EnVar that use either 3-D or 4-D ensemble covariances. For
each approach, the data assimilation experiments span the
periods 1 February to 14 March 2011 and 1 July to 14 Au-
gust 2011. First the impact of using EnVar analyses instead
of either 4D-Var or 3D-Var analyses is shown. Then the im-
pact of using 4-D versus 3-D ensemble covariances within
EnVar is examined. Though not entirely analogous with this
last comparison, it is also interesting to evaluate the impact
of including the time dimension in 4D-Var versus 3D-Var.

3.1 EnVar versus 4D-Var and 3D-Var

Figure 3 shows the standard deviation (solid curves) and
bias (dashed curves) relative to radiosonde observations of
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Table 1.Summary of experiments.

Experiment name Increment/analysis grid spacing Minimization iterations B matrix

EnVar or 4D-EnVar 66 km/25 km 70 Hybrid: 4-DBenkf+ 3-D Bnmc
3D-EnVar 66 km/25 km 70 Hybrid: 3-DBenkf+ 3-D Bnmc
4D-Var 100 km/25 km 35+ 30 (2 outer-loop iterations) 3-DBnmc
3D-Var 66 km/25 km 70 3-DBnmc
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Fig. 2. Evolution of (a) the total cost function,(b) the total obser-
vation cost function,(c) the cost function for satellite radiance ob-
servation, and(d) the cost function for aircraft observations. These
are shown for a single EnVar minimization without Hessian pre-
conditioning (solid line) and with Hessian preconditioning from the
previous analysis cycle (dashed line).

the 6 h forecasts (forecast-minus-observed values) from the
EnVar (red) and 4D-Var (blue) experiments over the Febru-
ary/March period. The results are shown for temperature (up-
per panels) and zonal wind (lower panels) on pressure lev-
els between 100 hPa and 1000 hPa and for three regions: the
northern extra-tropics (left panels), tropics (middle panels)
and southern extra-tropics (right panels). The small colored
boxes indicate the level of statistical significance with which
the scores for the two experiments can be considered dis-
tinct from each other and are only shown when the signifi-
cance level is 90 % or higher. The color of the boxes indicates
which experiment has the lower magnitude for standard de-
viation or bias. The predominantly red shading of most of
the boxes on the right of each panel indicates that the EnVar
experiment produces 6 h forecasts with significantly smaller

standard deviation than 4D-Var (however note the small, but
significant degradation for temperature near 250 hPa in the
northern extra-tropics with EnVar relative to 4D-Var). The
boxes on the left of each panel indicate that the bias is not
consistently larger or smaller in magnitude for EnVar than
4D-Var, except possibly for zonal wind in the tropics, which
is significantly smaller for EnVar than 4D-Var for almost all
levels. Figure 4 shows similar results for the EnVar and 4D-
Var experiments, except for the July/August period. The re-
sults for this period are quite similar to the February/March
period.

The next set of verification scores are computed relative
the ERA-Interim reanalyses (Dee at al., 2011). The stan-
dard deviation of the difference between forecasts and the
reanalyses was computed for all experiments after interpo-
lating the forecasts with spatial averaging onto a coarse res-
olution global 1.5◦ latitude-longitude grid. Figure 5 shows
contours of the differences in these standard deviations com-
puted from the EnVar and 3D-Var experiments for the Febru-
ary/March period as a function of pressure from 100 hPa to
1000 hPa and lead time every 24 h from 0 h to 120 h. Nega-
tive values correspond with a lower standard deviation for
EnVar than for 3D-Var. These are shown for geopotential
height for both the northern extra-tropics (Fig. 5a) and the
southern extra-tropics (Fig. 5c) and for zonal wind in the
tropics (Fig. 5b). The forecasts initialized with EnVar anal-
yses have better verification scores than with 3D-Var anal-
yses (i.e., smaller standard deviations relative to the reanal-
yses) for all regions, levels and lead times, except for some
later lead times in the tropics near the surface for which the
scores are nearly equal. Interestingly, the impact in the trop-
ics is largest at the shortest lead time, whereas in the extra-
tropics the impact is largest at 120 h, most noticeably near
the tropopause. Figure 6 shows similar results as the previ-
ous figure, except for the July/August period. These results
are similar as for the February/March period, except that
the difference in standard deviation is smaller in the north-
ern extra-tropics (summer season) and larger in the southern
extra-tropics (winter season).

Similar to the previous two figures, Figs. 7 and 8 show
the difference in standard deviation relative to the ERA-
Interim reanalyses between the EnVar and 4D-Var experi-
ments. For the February/March period, shown in Fig. 7, the
forecast scores are only very slightly better for EnVar as com-
pared with 4D-Var in the northern extra-tropics and worse in
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Fig. 3. The standard deviation (solid curves) and bias (dashed curves) for the 6 h forecasts produced by the EnVar (red) and 4D-Var (blue)
experiments for the February/March 2011 period relative to radiosonde observations. The results are shown for temperature (upper panels)
and zonal wind (lower panels) for the northern extra-tropics (left panels), tropics (middle panels) and southern extra-tropics (right panels).
The small shaded squares on each side of the panels indicate the significance level of the differences between the statistics (bias for left side,
standard deviation for right side) and the color indicates which experiment has the better score.

the southern extra-tropics. In the tropics, the scores are im-
proved for EnVar relative to 4D-Var, similar to the compari-
son between EnVar and 3D-Var. Similarly, Fig. 8 shows the
same comparison for EnVar versus 4D-Var, except for the
July/August period. The difference in the forecast scores in
the northern extra-tropics is again quite small, but for this
season the 4D-Var has slightly better forecasts. In the south-
ern extra-tropics, the scores also have the opposite sign as in
the February/March period, with a small improvement in the
scores for EnVar relative to 4D-Var, especially above 850 hPa
and at lead times beyond 48 h. In the tropical region, the
scores are again better for EnVar than 4D-Var and similar
to those seen in the comparison between EnVar and 3D-Var.

The hybrid background-error covariances used in the En-
Var experiments gradually transition from being a simple av-
erage of theBnmc andBenkf covariances in the troposphere
and lower stratosphere to being equivalent with theBnmc co-
variances above 10 hPa. To evaluate the impact of this on the
stratospheric analyses and forecasts, Fig. 9 shows similar re-
sults as in the previous figures, except for the layer of the at-
mosphere between 1 hPa and 100 hPa for the entire global do-
main. The difference in the standard deviation of temperature

forecasts relative to the reanalyses are shown comparing the
EnVar experiment with either 3D-Var (Fig. 9a) or 4D-Var
(Fig. 9b). As expected, the comparison with 3D-Var shows a
small consistent improvement for EnVar below about 10 hPa
and very similar forecast scores above. When compared with
4D-Var, the forecasts are of similar quality below 10 hPa
and significantly degraded above. Consequently, it appears
that the gradual transition with vertical level of the weight-
ing between the two covariance matrices in EnVar has the
predictable effect of producing similar quality forecasts as
3D-Var for the levels where the covariances are equivalent
with 3D-Var and forecasts of improved quality for the levels
whereBenkf makes a significant contribution to the hybrid
covariances.

In summary, the comparison between EnVar with 3D-Var
shows that EnVar nearly always produces improved forecasts
when compared with 3D-Var. When compared with 4D-Var,
the forecasts from EnVar analyses always have either sim-
ilar or better scores than 4D-Var in the troposphere of the
tropics and the winter extra-tropical region (i.e., northern
extra-tropics in February/March and southern extra-tropics
in July/August). Conversely, in the summer extra-tropical
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Fig. 4.Same as the previous figure, except for the July/August 2011 period.
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Fig. 5. The difference in standard deviation relative to ERA-Interim reanalyses for the EnVar and 3D-Var forecasts for the Febru-
ary/March 2011 period for(a) geopotential height in the northern extra-tropics,(b) zonal wind in the tropics, and(c) geopotential height in
the southern extra-tropics. Note that negative values corresponds with a smaller standard deviation relative to ERA-Interim reanalyses (i.e.,
better quality) for the forecasts from EnVar analyses than for the forecasts from 3D-Var analyses.

region, the medium-range forecasts from EnVar have ei-
ther similar or worse scores than 4D-Var in the troposphere.
These seasonal differences in the extra-tropics are largest in
the southern extra-tropics, where the EnVar is significantly
worse in February/March and better in July/August than 4D-
Var. In contrast, the short-range forecasts are consistently
improved for EnVar when compared with 4D-Var. In the

stratosphere above 10 hPa, the forecasts from EnVar are of
similar quality as 3D-Var and significantly worse than 4D-
Var.
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Fig. 6.Same as the previous figure, except for the July/August 2011 period.
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Fig. 7. Same as Fig. 5, except showing the difference in standard deviation relative the ERA-Interim reanalyses for the EnVar and 4D-Var
experiments for the February/March 2011 period. Note that negative values correspond with improved forecasts from EnVar analyses as
compared with forecasts from 4D-Var analyses.

3.2 4D-EnVar versus 3D-EnVar and 4D-Var versus
3D-Var

The 4-D ensemble covariances in EnVar act to propagate in-
formation from observations distributed throughout the 6 h
assimilation window to the middle of the window where the
computed analysis increment is used to produce the final
analysis. This ability is likely to be somewhat limited be-
cause the ensemble covariances are used in combination with
the 3-D climatological covariances. To help determine the
impact of using the 4-D ensemble covariances in this context,
an additional EnVar experiment was performed using the 3-
D ensemble covariances valid at the middle time. The exper-
iments are referred to as 3D-EnVar and 4D-EnVar to indicate
the type of ensemble covariances used in each. Figure 10
is similar to those shown in the previous subsection, but
comparing the forecasts from the 4D-EnVar and 3D-EnVar
experiments for the February/March period. These results
demonstrate that the use of 4-D ensemble covariances gives
a generally small improvement (note that the contour inter-
vals in Fig. 10 are 5 or 10 times smaller than in Figs. 5–8)

as compared with using the 3-D ensemble covariances. The
impact in the southern extra-tropics is larger than the north-
ern extra-tropics. Since the background-error covariances are
identical at the middle time in the 4D-EnVar and 3D-EnVar
experiments, observations near the middle time will have the
same influence on the analysis increment in the two experi-
ments. In contrast, observations near either the beginning or
end of the time window should be more accurately assimi-
lated when using the 4-D covariances than the purely 3-D co-
variances. Similar results were obtained for the July/August
period (not shown), except that the impact is slightly larger in
the southern extra-tropics and slightly smaller in the northern
extra-tropics.

In 4D-Var, the tangent linear and adjoint versions of the
forecast model are used to propagate information between
the observations distributed throughout the 6 h assimilation
window and the analysis increment computed at the begin-
ning of the window. The analysis increment computed at the
beginning of the window is then propagated with the non-
linear forecast model to the middle time to produce the final
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Fig. 8.Same as the previous figure, except for the July/August 2011 period.
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Fig. 9.The difference in standard deviation relative to ERA-Interim reanalyses in the stratosphere for(a) the EnVar-minus-3D-Var forecasts
and(b) the EnVar-minus-4D-Var forecasts for the February/March 2011 period for temperature over the entire global domain.

“analysis” used to initialize the medium-range forecasts. In
3D-Var, the analysis increment is computed directly at the
middle of the assimilation window, like in EnVar, based on
observations distributed throughout the window. However,
in 3D-Var the information from the observations is propa-
gated assuming it is unchanged through time. Therefore, all
of the observations are treated differently in 4D-Var versus
3D-Var and such a comparison is not directly analogous with
the comparison between 4D-EnVar and 3D-EnVar. Nonethe-
less, Fig. 11 shows the results comparing 4D-Var with 3D-
Var. The verification scores from 4D-Var are generally better
than 3D-Var in all three regions. Note that the differences in
the southern extra-tropics are as much as an order of mag-
nitude larger than the difference between 4D-EnVar and 3D-
EnVar. Similar results were obtained for the July/August pe-
riod (not shown), except that the impact is slightly smaller in
the southern extra-tropics and slightly larger in the northern
extra-tropics.

4 Temporal fit to observations over the assimilation
window

The ability of the EnVar analyses to fit observations dis-
tributed through time over the assimilation window provides
evidence of how well the 4-D ensemble covariances capture
the spatial-temporal structure of the errors. In 4D-Var, the
temporal covariances are implicitly modeled by the tangent-
linear and adjoint versions of the forecast model, whereas in
3D-Var the errors are assumed to be constant through time.
In this section, the ability of all three assimilation approaches
to fit observations distributed over the assimilation window
is examined to evaluate the accuracy of the spatial-temporal
background-error covariances used by each.

Figure 12 shows the fit to temperature (upper panels) and
zonal wind (lower panels) observations near 250 hPa (be-
tween 225 hPa and 275 hPa) from aircraft computed over the
entire February/March period for the EnVar (red curves), 4D-
Var (blue curves) and 3D-Var (green curves) experiments.
For 4D-Var, the fit to the observations is measured with
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Fig. 10. Same as Fig. 5, except showing the difference in standard deviation relative the ERA-Interim reanalyses for the 4D-EnVar and
3D-EnVar experiments for the February/March 2011 period. Note that negative values correspond with improved forecasts from 4D-EnVar
analyses as compared with forecasts from 3D-EnVar analyses.
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Fig. 11.Same as the previous figure, except showing the difference in standard deviation relative the ERA-Interim reanalyses for the 4D-Var
and 3D-Var experiments for the February/March 2011 period.

respect to either the final integration of the tangent-linear ver-
sion of the forecast model (blue), or an integration of the
high-resolution nonlinear forecast model starting from the
analysis at the beginning of the assimilation window (not
shown). The standard deviation of the observation-minus-
background (solid curves) and observation-minus-analysis
(dashed curves) is shown in Fig. 12a and c as a function
of the relative time within the assimilation window. For all
experiments the background state fits the observations more
closely at the beginning of the window than at the end.
While the analysis fits the observations more closely than
the background state over the entire window, it appears to
vary less over the assimilation window than for the back-
ground state. Note that the background state from 4D-Var
consistently agrees more with the aircraft temperature obser-
vations than for EnVar, consistent with the similar measure
at 250 hPa shown for radiosonde observations in Fig. 3a. To
give a more direct measure of how the analysis from each as-
similation approach fits the observations over time, Fig. 12b
and d show the proportional reduction in the variance of the

fit to the observations,

D(t) =
var

[
y (t) − H (xb (t))

]
− var

[
y (t) − H (xa(t))

]
var

[
y (t) − H (xb (t))

] , (4)

after being normalized by its value at the middle of the as-
similation window,

D̂ (t) =
D(t)

D (tmiddle)
, (5)

where the variablet denotes the relative time within each 6 h
assimilation window, that is, from−3 h to 3 h, andtmiddle is
0 h. Since this quantity is normalized to have a value of one
at the middle of the window, it provides a relative average
measure of how each assimilation approach improves the fit
to observations at times away from the middle of the window.
Values less than one for a particular time in the assimilation
window indicate that the analysis is drawn to these observa-
tions less than it is drawn to the observations at the middle of
the assimilation window. Figure 12b and d show that all of
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Fig. 12. Results showing the mean fit of the analyses from different assimilation approaches over the 6 h assimilation window. Left pan-
els: the standard deviation of the observation-minus-background (solid curves) and observation-minus-analysis (dashed curves) for aircraft
observations. Right panels: the relative improvement in the fit to the observations made by the assimilation procedure, normalized by this
measure at the middle of the assimilation window (see Eqs.4 and5). These are shown for all observations of 250 hPa temperature (upper
panels) and 250 hPa zonal wind (lower panels) from aircraft over the February/March 2011 period for the EnVar (red), 4D-Var (blue), and
3D-Var (green) experiments. The 4D-Var results are from propagating the analysis increment with the tangent linear model.

the assimilation approaches generally move the background
state a greater “distance” towards the aircraft observations
in the second half of the assimilation window than for the
observations in the first half of the assimilation window, con-
sistent with the results seen in the panels on the left. Also, the
3D-Var approach (green) appears less able to fit observations
before and after the middle of the assimilation window than
both EnVar (red) and 4D-Var (blue). In general, the EnVar
and 4D-Var approaches fit the observations before and after
the middle of the assimilation window similarly, except that
EnVar fits the zonal wind observations in the second half con-
sistently more closely than 4D-Var. Only small differences
are seen in the fit to the observations with 4D-Var when us-
ing either the tangent-linear or nonlinear model to propagate
the analysis increment from the beginning of the assimilation
window to later times (not shown).

Similarly, Fig. 13 shows the same type of information as
the previous figure, but for the brightness temperature obser-
vations from channels 6, 10 and 14 of the AMSU-A instru-
ments. For channel 14, which is most sensitive to temper-
ature around 2 hPa, the 3D-Var and EnVar approaches give
very similar results, consistent with the equivalence of the
two approaches above 10 hPa, as mentioned previously. For
both 3D-Var and EnVar, the relative fit to observations by
the analysis is slightly less near the beginning and end of
the assimilation window as compared with the middle of the
window. In contrast, with 4D-Var the analysis fits the obser-
vation much less closely near the beginning of the window

as compared with 3D-Var and EnVar, and significantly more
closely in the second half of the window relative to the mid-
dle of the window. This can possibly be explained by a large
growth rate of the temperature perturbations around 2 hPa
during the 6 h forecast model integration. This would make
it easier in 4D-Var to create large analysis increments near
the end of the assimilation window as compared with EnVar
and 3D-Var which both have analysis increments at this level
that are constant in time due to the use of 3-D background-
error covariances (since EnVar fully usesBnmc at this level).
The impact of partially using the 4-D ensemble covariances
in EnVar at lower levels is seen in the results for channels
10 and 6. In both cases, the EnVar analyses are drawn more
strongly towards the observations away from the middle of
the assimilation window than with 3D-Var. For channel 10,
which is most sensitive to temperature around 40 hPa, the En-
Var analyses generally provide the closest relative fit to the
observations, especially near the beginning of the assimila-
tion window as compared with 3D-Var and 4D-Var. For chan-
nel 6, which is most sensitive to temperature around 300 hPa,
both EnVar and 3D-Var provide a larger relative fit to the
observations near the beginning of the assimilation window,
whereas both EnVar and 4D-Var give a similarly larger fit to
the observations than for 3D-Var near the end of the assimi-
lation window.

The same results were computed also for the 3D-EnVar
experiment, though they are not shown in Figs. 12 and
13 for the sake of clarity. Consistent with the forecast
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Fig. 13.Same as the previous figure, except for brightness temperature observations from AMSU-A channel 14 (upper panels), 10 (middle
panels), and 6 (lower panels).

verification scores shown in the previous section, the fit of
the background state to the observations is similar to, but
slightly worse than for the 4D-EnVar experiment for both
aircraft and AMSU-A observations. However, for the relative
measure given by Eqs. (4) and (5) the results from 3D-EnVar
are very similar to those for 3D-Var. This confirms that the
improved relative fit of 4D-EnVar analyses to observations
near the beginning and end of the assimilation window (as
compared with 3D-Var in Figs. 12 and 13) is due to the use
of the 4-D ensemble covariances.

The results shown in this section suggest that the use of 4-
D ensemble covariances below about 10 hPa enables EnVar
to produce a 4-D analysis increment that is reasonably con-
sistent with the misfit between the observations and the back-
ground state throughout the 6 h assimilation window. This
allows the EnVar approach, like 4D-Var, to better make use
of the observations distributed throughout the assimilation
window than assimilation approaches that assume the error
in the background state is constant for all times in the as-
similation window, like 3D-Var or 3D-EnVar. However, this
aspect of EnVar, as implemented for this study, is certainly
limited by the weighted average between the 4-D ensemble
covariances and the 3-D static covariances used to specify
the background-error covariances. From the comparison of
4D-EnVar with 3D-EnVar in the previous section, it can be

concluded that the inclusion of this aspect in EnVar only re-
sults in a relatively small improvement to forecast quality.

5 Conclusions

The goal of this study was to evaluate a version of the
ensemble-variational data assimilation approach (EnVar) for
possible replacement of 4D-Var for operational global de-
terministic weather prediction at Environment Canada. This
implementation of EnVar relies on the 4-D ensemble covari-
ances obtained from the Canadian ensemble Kalman filter,
currently used for initializing ensemble forecasts. Verifica-
tion against ERA-Interim reanalyses were generated from a
set of data assimilation experiments over two separate 6 week
periods for EnVar, 4D-Var and also for 3D-Var and a ver-
sion of EnVar that uses 3-D ensemble covariances. In these
experiments, EnVar analyses nearly always result in im-
proved, and never degraded, forecasts when compared with
3D-Var. Compared with 4D-Var, the forecasts from EnVar
analyses have either similar or better scores in the tropo-
sphere of the tropics and the winter extra-tropical region.
In the summer extra-tropical region the medium-range fore-
casts from EnVar have either similar or worse scores than
4D-Var in the troposphere. The seasonal differences in the
extra-tropics of medium-range forecast quality are largest in
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the southern extra-tropics, where the EnVar is significantly
worse in February/March and better in July/August than 4D-
Var. In contrast, the 6 h forecasts from the EnVar experiments
are significantly better than those from 4D-Var relative to ra-
diosonde observations for both periods and in all regions. In
the stratosphere above 10 hPa, the forecasts from EnVar anal-
yses are of similar quality with those from 3D-Var, consistent
with the fact that both use the same static background-error
covariances here, and significantly worse than those from
4D-Var. A possible approach for improving the EnVar anal-
yses and resulting forecasts in the stratosphere is to raise the
top model level in the EnKF (currently 2 hPa) to the same
level as in the deterministic system (0.1 hPa). The use of
4-D ensemble covariances as compared with 3-D ensemble
covariances only results in small improvements in forecast
quality. By contrast, the improvements from using 4D-Var as
compared with 3D-Var are much larger.

In conclusion, the results from this study suggest that the
EnVar approach is a viable alternative to 4D-Var, especially
when the simplicity and computational efficiency of EnVar
are considered. It should be emphasized that, due to prac-
tical reasons, a version of 4D-Var that uses 3-D ensemble
background-error covariances in place of the static covari-
ances was not considered. In preparation for a possible oper-
ational implementation, research is underway with the goal
of understanding the causes of the lower quality medium-
range forecasts in the summer extra-tropical regions as com-
pared with 4D-Var. If this problem is eventually resolved by
making improvements to the EnKF itself, then both the de-
terministic and ensemble forecasting systems will automat-
ically benefit from this work. EnVar is also currently be-
ing tested in combination with other planned upgrades to
the global deterministic system, including a version of the
forecast model that uses a global Yin-Yang grid with 15 km
horizontal grid-spacing (Qaddouri and Lee, 2011), additional
AIRS and IASI channels assimilated, and improved use of
radiosonde observations (Laroche and Sarrazin, 2013). En-
couraging preliminary results have also been obtained from
tests to evaluate the impact of using EnVar instead of the cur-
rently operational 4D-Var approach for regional determinis-
tic analyses over North America (Tanguay et al., 2012).
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