Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 1.329 IF 1.329
  • IF 5-year<br/> value: 1.394 IF 5-year
    1.394
  • CiteScore<br/> value: 1.27 CiteScore
    1.27
  • SNIP value: 0.903 SNIP 0.903
  • SJR value: 0.709 SJR 0.709
  • IPP value: 1.455 IPP 1.455
  • h5-index value: 20 h5-index 20
Nonlin. Processes Geophys., 21, 1093-1111, 2014
https://doi.org/10.5194/npg-21-1093-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
11 Nov 2014
Estimation of sedimentary proxy records together with associated uncertainty
B. Goswami2,1, J. Heitzig1, K. Rehfeld*,3,1, N. Marwan1, A. Anoop4, S. Prasad5, and J. Kurths6,3,1 1Potsdam Institute for Climate Impact Research, Transdisciplinary Concepts & Methods, 14412 Potsdam, Germany
2Department of Physics, University of Potsdam, Karl-Liebknecht Str. 24–25, 14476 Potsdam, Germany
3Department of Physics, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489 Berlin, Germany
4Dept. of Earth Sciences, Indian Institute of Science Education and Research, 741252, Kolkata, India
5Institute of Earth and Environmental Science, University of Potsdam, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, Germany
6Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, AB24 3UE, UK
*now at: Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, 14473 Potsdam, Germany
Abstract. Sedimentary proxy records constitute a significant portion of the recorded evidence that allows us to investigate paleoclimatic conditions and variability. However, uncertainties in the dating of proxy archives limit our ability to fix the timing of past events and interpret proxy record intercomparisons. While there are various age-modeling approaches to improve the estimation of the age–depth relations of archives, relatively little focus has been placed on the propagation of the age (and radiocarbon calibration) uncertainties into the final proxy record.

We present a generic Bayesian framework to estimate proxy records along with their associated uncertainty, starting with the radiometric age–depth and proxy–depth measurements, and a radiometric calibration curve if required. We provide analytical expressions for the posterior proxy probability distributions at any given calendar age, from which the expected proxy values and their uncertainty can be estimated. We illustrate our method using two synthetic data sets and then use it to construct the proxy records for groundwater inflow and surface erosion from Lonar lake in central India.

Our analysis reveals interrelations between the uncertainty of the proxy record over time and the variance of proxies along the depth of the archive. For the Lonar lake proxies, we show that, rather than the age uncertainties, it is the proxy variance combined with calibration uncertainty that accounts for most of the final uncertainty. We represent the proxy records as probability distributions on a precise, error-free timescale that makes further time series analyses and intercomparisons of proxies relatively simple and clear. Our approach provides a coherent understanding of age uncertainties within sedimentary proxy records that involve radiometric dating. It can be potentially used within existing age modeling structures to bring forth a reliable and consistent framework for proxy record estimation.


Citation: Goswami, B., Heitzig, J., Rehfeld, K., Marwan, N., Anoop, A., Prasad, S., and Kurths, J.: Estimation of sedimentary proxy records together with associated uncertainty, Nonlin. Processes Geophys., 21, 1093-1111, https://doi.org/10.5194/npg-21-1093-2014, 2014.
Publications Copernicus
Download
Short summary
We present a new approach to estimating sedimentary proxy records along with the proxy uncertainty. We provide analytical expressions for the proxy record, while transparently propagating uncertainties from the ages to the proxy record. We represent proxies on an error-free, precise timescale. Our approach provides insight into the interrelations between proxy variability and the various uncertainties. We demonstrate our method with synthetic examples and proxy data from the Lonar lake in India.
We present a new approach to estimating sedimentary proxy records along with the proxy...
Share