Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.699 IF 1.699
  • IF 5-year value: 1.559 IF 5-year
    1.559
  • CiteScore value: 1.61 CiteScore
    1.61
  • SNIP value: 0.884 SNIP 0.884
  • IPP value: 1.49 IPP 1.49
  • SJR value: 0.648 SJR 0.648
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 52 Scimago H
    index 52
  • h5-index value: 21 h5-index 21
Volume 21, issue 6
Nonlin. Processes Geophys., 21, 1145–1157, 2014
https://doi.org/10.5194/npg-21-1145-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Physics-driven data mining in climate change and weather...

Nonlin. Processes Geophys., 21, 1145–1157, 2014
https://doi.org/10.5194/npg-21-1145-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 01 Dec 2014

Research article | 01 Dec 2014

Non-parametric Bayesian mixture of sparse regressions with application towards feature selection for statistical downscaling

D. Das et al.
Related authors  
Toward enhanced understanding and projections of climate extremes using physics-guided data mining techniques
A. R. Ganguly, E. A. Kodra, A. Agrawal, A. Banerjee, S. Boriah, Sn. Chatterjee, So. Chatterjee, A. Choudhary, D. Das, J. Faghmous, P. Ganguli, S. Ghosh, K. Hayhoe, C. Hays, W. Hendrix, Q. Fu, J. Kawale, D. Kumar, V. Kumar, W. Liao, S. Liess, R. Mawalagedara, V. Mithal, R. Oglesby, K. Salvi, P. K. Snyder, K. Steinhaeuser, D. Wang, and D. Wuebbles
Nonlin. Processes Geophys., 21, 777–795, https://doi.org/10.5194/npg-21-777-2014,https://doi.org/10.5194/npg-21-777-2014, 2014
Related subject area  
Subject: Predictability, Data Assimilation | Topic: Climate, Atmosphere, Ocean, Hydrology, Cryosphere, Biosphere
Joint state-parameter estimation of a nonlinear stochastic energy balance model from sparse noisy data
Fei Lu, Nils Weitzel, and Adam H. Monahan
Nonlin. Processes Geophys., 26, 227–250, https://doi.org/10.5194/npg-26-227-2019,https://doi.org/10.5194/npg-26-227-2019, 2019
Short summary
Non-Gaussian statistics in global atmospheric dynamics: a study with a 10 240-member ensemble Kalman filter using an intermediate atmospheric general circulation model
Keiichi Kondo and Takemasa Miyoshi
Nonlin. Processes Geophys., 26, 211–225, https://doi.org/10.5194/npg-26-211-2019,https://doi.org/10.5194/npg-26-211-2019, 2019
Short summary
Fluctuations of finite-time Lyapunov exponents in an intermediate-complexity atmospheric model: a multivariate and large-deviation perspective
Frank Kwasniok
Nonlin. Processes Geophys., 26, 195–209, https://doi.org/10.5194/npg-26-195-2019,https://doi.org/10.5194/npg-26-195-2019, 2019
Short summary
Data assimilation using adaptive, non-conservative, moving mesh models
Ali Aydoğdu, Alberto Carrassi, Colin T. Guider, Chris K. R. T Jones, and Pierre Rampal
Nonlin. Processes Geophys., 26, 175–193, https://doi.org/10.5194/npg-26-175-2019,https://doi.org/10.5194/npg-26-175-2019, 2019
Short summary
Data assimilation as a learning tool to infer ordinary differential equation representations of dynamical models
Marc Bocquet, Julien Brajard, Alberto Carrassi, and Laurent Bertino
Nonlin. Processes Geophys., 26, 143–162, https://doi.org/10.5194/npg-26-143-2019,https://doi.org/10.5194/npg-26-143-2019, 2019
Short summary
Cited articles  
Antoniak, C.: Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems, Ann. Stat., 2, 1152–1174, 1974.
Bader, D. C., Covey, C., Gutkowski Jr., W. J., Held, I. M., Kunkel, K. E., Miller, R. L., Tokmakian, R. T., and Zhang, M. H.: Climate Models: An Assessment of Strengths and Limitations, US Climate Change Science Program Synthesis and Assessment Product 3.1, Department of Energy, Office of Biological and Environmental Research, 124 pp., available at: http://pubs.giss.nasa.gov/docs/2008/2008_Bader_etal_1.pdf (last access: 20 July 2014), 2008.
Basu, S., Bilenko, M., Banerjee, A., and Mooney, R.: Probabilistic semi-supervised clustering with constraints, J. Mach. Learn. Res., 71–98, 2006.
Benestad, R., Hanssen-Bauer, I., and Chen, D.: Empirical-Statistical Downscaling, World Scientific Publishing Company, New Jersey, London, 2008.
Bishop, C. and Svenskn, M.: Bayesian hierarchical mixtures of experts, in: Uncertainty in Artificial Intelligence, Morgan Kaufman, San Francisco, CA, 57–64, 2002.
Publications Copernicus
Download
Citation