Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 1.329 IF 1.329
  • IF 5-year<br/> value: 1.394 IF 5-year
  • CiteScore<br/> value: 1.27 CiteScore
  • SNIP value: 0.903 SNIP 0.903
  • SJR value: 0.709 SJR 0.709
  • IPP value: 1.455 IPP 1.455
  • h5-index value: 20 h5-index 20
Nonlin. Processes Geophys., 21, 651-657, 2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
03 Jun 2014
On the influence of spatial sampling on climate networks
N. Molkenthin1,2, K. Rehfeld1,3, V. Stolbova1,2, L. Tupikina1,2, and J. Kurths1,2 1PIK Potsdam Institute of Climate Impact Research, P.O. Box 601203, 14412 Potsdam, Germany
2Department of Physics, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489 Berlin, Germany
3Alfred-Wegner Institute for Polar and Marine Research, Telegrafenberg A43, 14473 Potsdam, Germany
Abstract. Climate networks are constructed from climate time series data using correlation measures. It is widely accepted that the geographical proximity, as well as other geographical features such as ocean and atmospheric currents, have a large impact on the observable time-series similarity. Therefore it is to be expected that the spatial sampling will influence the reconstructed network. Here we investigate this by comparing analytical flow networks, networks generated with the START model and networks from temperature data from the Asian monsoon domain. We evaluate them on a regular grid, a grid with added random jittering and two variations of clustered sampling. We find that the impact of the spatial sampling on most network measures only distorts the plots if the node distribution is significantly inhomogeneous. As a simple diagnostic measure for the detection of inhomogeneous sampling we suggest the Voronoi cell size distribution.

Citation: Molkenthin, N., Rehfeld, K., Stolbova, V., Tupikina, L., and Kurths, J.: On the influence of spatial sampling on climate networks, Nonlin. Processes Geophys., 21, 651-657,, 2014.
Publications Copernicus