Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.699 IF 1.699
  • IF 5-year value: 1.559 IF 5-year
    1.559
  • CiteScore value: 1.61 CiteScore
    1.61
  • SNIP value: 0.884 SNIP 0.884
  • IPP value: 1.49 IPP 1.49
  • SJR value: 0.648 SJR 0.648
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 52 Scimago H
    index 52
  • h5-index value: 21 h5-index 21
Volume 21, issue 4
Nonlin. Processes Geophys., 21, 777–795, 2014
https://doi.org/10.5194/npg-21-777-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Physics-driven data mining in climate change and weather...

Nonlin. Processes Geophys., 21, 777–795, 2014
https://doi.org/10.5194/npg-21-777-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 28 Jul 2014

Research article | 28 Jul 2014

Toward enhanced understanding and projections of climate extremes using physics-guided data mining techniques

A. R. Ganguly et al.
Related authors  
Non-parametric Bayesian mixture of sparse regressions with application towards feature selection for statistical downscaling
D. Das, J. Dy, J. Ross, Z. Obradovic, and A. R. Ganguly
Nonlin. Processes Geophys., 21, 1145–1157, https://doi.org/10.5194/npg-21-1145-2014,https://doi.org/10.5194/npg-21-1145-2014, 2014
Related subject area  
Subject: Time Series, Complex Networks, Stochastic Processes, Extreme Events | Topic: Climate, Atmosphere, Ocean, Hydrology, Cryosphere, Biosphere
A prototype stochastic parameterization of regime behaviour in the stably stratified atmospheric boundary layer
Carsten Abraham, Amber M. Holdsworth, and Adam H. Monahan
Nonlin. Processes Geophys., 26, 401–427, https://doi.org/10.5194/npg-26-401-2019,https://doi.org/10.5194/npg-26-401-2019, 2019
Short summary
Statistical post-processing of ensemble forecasts of the height of new snow
Jari-Pekka Nousu, Matthieu Lafaysse, Matthieu Vernay, Joseph Bellier, Guillaume Evin, and Bruno Joly
Nonlin. Processes Geophys., 26, 339–357, https://doi.org/10.5194/npg-26-339-2019,https://doi.org/10.5194/npg-26-339-2019, 2019
Short summary
Unravelling the spatial diversity of Indian precipitation teleconnections via a non-linear multi-scale approach
Jürgen Kurths, Ankit Agarwal, Roopam Shukla, Norbert Marwan, Maheswaran Rathinasamy, Levke Caesar, Raghavan Krishnan, and Bruno Merz
Nonlin. Processes Geophys., 26, 251–266, https://doi.org/10.5194/npg-26-251-2019,https://doi.org/10.5194/npg-26-251-2019, 2019
Short summary
On fluctuating momentum-exchange in idealised models of air-sea interaction
Achim Wirth
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2019-40,https://doi.org/10.5194/npg-2019-40, 2019
Revised manuscript accepted for NPG
Short summary
Statistical hypothesis testing in wavelet analysis: theoretical developments and applications to Indian rainfall
Justin A. Schulte
Nonlin. Processes Geophys., 26, 91–108, https://doi.org/10.5194/npg-26-91-2019,https://doi.org/10.5194/npg-26-91-2019, 2019
Short summary
Cited articles  
Alexander, L. and Perkins, S.: Debate heating up over changes in climate variability, Environ. Res. Lett., 8, 041001, https://doi.org/10.1088/1748-9326/8/4/041001, 2013.
Armbrust, M., Stoica, I., Zaharia, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee, G., Patterson, D., and Rabkin, A.: A view of cloud computing, Commun. ACM, 53, 50–58, https://doi.org/10.1145/1721654.1721672, 2010.
Bain, C. L., De Paz, J., Kramer, J., Magnusdottir, G., Smyth, P., Stern, H., and Wang, C.: Detecting the ITCZ in Instantaneous Satellite Data using Spatiotemporal Statistical Modeling: ITCZ Climatology in the East Pacific, J. Climate, 24, 216–230, https://doi.org/10.1175/2010JCLI3716.1, 2011.
Balakrishnan, S., Rinaldo, A., Singh, A., and Wasserman, L.: Tight Lower Bounds for Homology Inference, arXiv:1307.7666, 2013a.
Balakrishnan, S., Narayanan, S., Rinaldo, A., Singh, A., and Wasserman, L.: Cluster Trees on Manifold, in: Neural Information Processing Systems 2013, Lake Tahoe, Nevada, USA, 26 pp., 2013b.
Publications Copernicus
Download
Citation