Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.699 IF 1.699
  • IF 5-year value: 1.559 IF 5-year
    1.559
  • CiteScore value: 1.61 CiteScore
    1.61
  • SNIP value: 0.884 SNIP 0.884
  • IPP value: 1.49 IPP 1.49
  • SJR value: 0.648 SJR 0.648
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 52 Scimago H
    index 52
  • h5-index value: 21 h5-index 21
Volume 21, issue 5
Nonlin. Processes Geophys., 21, 939–953, 2014
https://doi.org/10.5194/npg-21-939-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Physics-driven data mining in climate change and weather...

Nonlin. Processes Geophys., 21, 939–953, 2014
https://doi.org/10.5194/npg-21-939-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 12 Sep 2014

Research article | 12 Sep 2014

Logit-normal mixed model for Indian monsoon precipitation

L. R. Dietz and S. Chatterjee
Related authors  
Probabilistic evaluation of competing climate models
Amy Braverman, Snigdhansu Chatterjee, Megan Heyman, and Noel Cressie
Adv. Stat. Clim. Meteorol. Oceanogr., 3, 93–105, https://doi.org/10.5194/ascmo-3-93-2017,https://doi.org/10.5194/ascmo-3-93-2017, 2017
Short summary
Instability and change detection in exponential families and generalized linear models, with a study of Atlantic tropical storms
Y. Lu and S. Chatterjee
Nonlin. Processes Geophys., 21, 1133–1143, https://doi.org/10.5194/npg-21-1133-2014,https://doi.org/10.5194/npg-21-1133-2014, 2014
Short summary
Toward enhanced understanding and projections of climate extremes using physics-guided data mining techniques
A. R. Ganguly, E. A. Kodra, A. Agrawal, A. Banerjee, S. Boriah, Sn. Chatterjee, So. Chatterjee, A. Choudhary, D. Das, J. Faghmous, P. Ganguli, S. Ghosh, K. Hayhoe, C. Hays, W. Hendrix, Q. Fu, J. Kawale, D. Kumar, V. Kumar, W. Liao, S. Liess, R. Mawalagedara, V. Mithal, R. Oglesby, K. Salvi, P. K. Snyder, K. Steinhaeuser, D. Wang, and D. Wuebbles
Nonlin. Processes Geophys., 21, 777–795, https://doi.org/10.5194/npg-21-777-2014,https://doi.org/10.5194/npg-21-777-2014, 2014
Related subject area  
Subject: Time Series, Complex Networks, Stochastic Processes, Extreme Events | Topic: Climate, Atmosphere, Ocean, Hydrology, Cryosphere, Biosphere
Unravelling the spatial diversity of Indian precipitation teleconnections via a non-linear multi-scale approach
Jürgen Kurths, Ankit Agarwal, Roopam Shukla, Norbert Marwan, Maheswaran Rathinasamy, Levke Caesar, Raghavan Krishnan, and Bruno Merz
Nonlin. Processes Geophys., 26, 251–266, https://doi.org/10.5194/npg-26-251-2019,https://doi.org/10.5194/npg-26-251-2019, 2019
Short summary
Statistical hypothesis testing in wavelet analysis: theoretical developments and applications to Indian rainfall
Justin A. Schulte
Nonlin. Processes Geophys., 26, 91–108, https://doi.org/10.5194/npg-26-91-2019,https://doi.org/10.5194/npg-26-91-2019, 2019
Short summary
Statistical post-processing of ensemble forecasts of the height of new snow
Jari-Pekka Nousu, Matthieu Lafaysse, Matthieu Vernay, Joseph Bellier, Guillaume Evin, and Bruno Joly
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2019-27,https://doi.org/10.5194/npg-2019-27, 2019
Revised manuscript accepted for NPG
Short summary
Comparison of stochastic parameterizations in the framework of a coupled ocean–atmosphere model
Jonathan Demaeyer and Stéphane Vannitsem
Nonlin. Processes Geophys., 25, 605–631, https://doi.org/10.5194/npg-25-605-2018,https://doi.org/10.5194/npg-25-605-2018, 2018
Short summary
Idealized models of the joint probability distribution of wind speeds
Adam H. Monahan
Nonlin. Processes Geophys., 25, 335–353, https://doi.org/10.5194/npg-25-335-2018,https://doi.org/10.5194/npg-25-335-2018, 2018
Short summary
Cited articles  
Ajayamohan, R., Merryfield, W., and Kharin, V.: Increasing trend of synoptic activity and its relationship with extreme rain events over central India, J. Climate, 23, 1004–1013, 2008.
Attri, S. D. and Tyagi, A.: Climate Profile of India, Tech. rep., Government of India, Ministry of Earth Sciences, India Meteorological Department, New Delhi, India, 2010.
Bates, D.: lme4: Mixed-effects modeling with R (Preprint), Springer, http://lme4.r-forge.r-project.org/lMMwR/lrgprt.pdf (last access: 1 April 2014), 2010.
Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H., and White, J.-S. S.: Generalized linear mixed models: a practical guide for ecology and evolution, Trends Ecol. Evol., 24, 127–135, 2009.
Breslow, N. and Clayton, D.: Approximate Inference in Generalized Linear Mixed Models, J. Am. Stat. Assoc., 88, 9–25, 1993.
Publications Copernicus
Download
Citation