Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.129 IF 1.129
  • IF 5-year value: 1.519 IF 5-year
    1.519
  • CiteScore value: 1.54 CiteScore
    1.54
  • SNIP value: 0.798 SNIP 0.798
  • SJR value: 0.610 SJR 0.610
  • IPP value: 1.41 IPP 1.41
  • h5-index value: 21 h5-index 21
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 48 Scimago H
    index 48
Volume 22, issue 1
Nonlin. Processes Geophys., 22, 1-13, 2015
https://doi.org/10.5194/npg-22-1-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Nonlin. Processes Geophys., 22, 1-13, 2015
https://doi.org/10.5194/npg-22-1-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 06 Jan 2015

Research article | 06 Jan 2015

Multiple-scale error growth in a convection-resolving model

F. Uboldi1 and A. Trevisan2 F. Uboldi and A. Trevisan
  • 1Independent researcher, Milan, Italy
  • 2CNR-ISAC, Bologna, Italy

Abstract. The properties of the multiple-scale instabilities present in a non-hydrostatic forecast model are investigated. The model simulates intense convection episodes occurring in northern Italy. A breeding technique is used to construct ensembles of perturbations of the model trajectories aimed at representing the instabilities that are responsible for error growth on various timescales and space scales. By means of perfect model twin experiments it is found that, for initial errors of the order of present-day analysis error, a non-negligible fraction of the forecast error can be explained by a bred vector ensemble of reasonable size representing the growth of errors on intermediate scales. In contrast, when the initial error is much smaller, the spectrum of bred vectors representing the fast convective-scale instabilities becomes flat, and the number of ensemble members needed to explain even a small fraction of the forecast error becomes extremely large. The conclusion is that as the analysis error is decreased, it becomes more and more computationally demanding to construct an ensemble that can describe the high-dimensional subspace of convective instabilities and that can thus be potentially useful for controlling the error growth.

Publications Copernicus
Download
Citation
Share