Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.699 IF 1.699
  • IF 5-year value: 1.559 IF 5-year
    1.559
  • CiteScore value: 1.61 CiteScore
    1.61
  • SNIP value: 0.884 SNIP 0.884
  • IPP value: 1.49 IPP 1.49
  • SJR value: 0.648 SJR 0.648
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 52 Scimago H
    index 52
  • h5-index value: 21 h5-index 21
Volume 22, issue 4
Nonlin. Processes Geophys., 22, 371–376, 2015
https://doi.org/10.5194/npg-22-371-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Nonlin. Processes Geophys., 22, 371–376, 2015
https://doi.org/10.5194/npg-22-371-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 10 Jul 2015

Research article | 10 Jul 2015

Improved singular spectrum analysis for time series with missing data

Y. Shen1, F. Peng1,2, and B. Li1 Y. Shen et al.
  • 1College of Surveying and Geo-informatics, Tongji University, Shanghai, China
  • 2Center for Spatial Information Science and Sustainable Development, Shanghai, China

Abstract. Singular spectrum analysis (SSA) is a powerful technique for time series analysis. Based on the property that the original time series can be reproduced from its principal components, this contribution develops an improved SSA (ISSA) for processing the incomplete time series and the modified SSA (SSAM) of Schoellhamer (2001) is its special case. The approach is evaluated with the synthetic and real incomplete time series data of suspended-sediment concentration from San Francisco Bay. The result from the synthetic time series with missing data shows that the relative errors of the principal components reconstructed by ISSA are much smaller than those reconstructed by SSAM. Moreover, when the percentage of the missing data over the whole time series reaches 60 %, the improvements of relative errors are up to 19.64, 41.34, 23.27 and 50.30 % for the first four principal components, respectively. Both the mean absolute error and mean root mean squared error of the reconstructed time series by ISSA are also smaller than those by SSAM. The respective improvements are 34.45 and 33.91 % when the missing data accounts for 60 %. The results from real incomplete time series also show that the standard deviation (SD) derived by ISSA is 12.27 mg L−1, smaller than the 13.48 mg L−1 derived by SSAM.

Publications Copernicus
Download
Citation