Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.699 IF 1.699
  • IF 5-year value: 1.559 IF 5-year
    1.559
  • CiteScore value: 1.61 CiteScore
    1.61
  • SNIP value: 0.884 SNIP 0.884
  • IPP value: 1.49 IPP 1.49
  • SJR value: 0.648 SJR 0.648
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 52 Scimago H
    index 52
  • h5-index value: 21 h5-index 21
Volume 22, issue 5
Nonlin. Processes Geophys., 22, 589–599, 2015
https://doi.org/10.5194/npg-22-589-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Nonlin. Processes Geophys., 22, 589–599, 2015
https://doi.org/10.5194/npg-22-589-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Brief communication 09 Oct 2015

Brief communication | 09 Oct 2015

Brief Communication: Earthquake sequencing: analysis of time series constructed from the Markov chain model

M. S. Cavers and K. Vasudevan

Related authors

Earthquake sequencing: chimera states with Kuramoto model dynamics on directed graphs
K. Vasudevan, M. Cavers, and A. Ware
Nonlin. Processes Geophys., 22, 499–512, https://doi.org/10.5194/npg-22-499-2015,https://doi.org/10.5194/npg-22-499-2015, 2015
Short summary

Related subject area

Subject: Time Series, Complex Networks, Stochastic Processes, Extreme Events | Topic: Solid Earth, Continental Surface, Biogeochemistry
A fast approximation for 1-D inversion of transient electromagnetic data by using a back propagation neural network and improved particle swarm optimization
Ruiyou Li, Huaiqing Zhang, Nian Yu, Ruiheng Li, and Qiong Zhuang
Nonlin. Processes Geophys., 26, 445–456, https://doi.org/10.5194/npg-26-445-2019,https://doi.org/10.5194/npg-26-445-2019, 2019
Short summary
Negentropy anomaly analysis of the borehole strain associated with the Ms 8.0 Wenchuan earthquake
Kaiguang Zhu, Zining Yu, Chengquan Chi, Mengxuan Fan, and Kaiyan Li
Nonlin. Processes Geophys., 26, 371–380, https://doi.org/10.5194/npg-26-371-2019,https://doi.org/10.5194/npg-26-371-2019, 2019
Short summary
Mahalanobis distance-based recognition of changes in the dynamics of a seismic process
Teimuraz Matcharashvili, Zbigniew Czechowski, and Natalia Zhukova
Nonlin. Processes Geophys., 26, 291–305, https://doi.org/10.5194/npg-26-291-2019,https://doi.org/10.5194/npg-26-291-2019, 2019
Denoising stacked autoencoders for transient electromagnetic signal denoising
Fanqiang Lin, Kecheng Chen, Xuben Wang, Hui Cao, Danlei Chen, and Fanzeng Chen
Nonlin. Processes Geophys., 26, 13–23, https://doi.org/10.5194/npg-26-13-2019,https://doi.org/10.5194/npg-26-13-2019, 2019
Short summary
Simple statistics for complex Earthquake time distributions
Teimuraz Matcharashvili, Takahiro Hatano, Tamaz Chelidze, and Natalia Zhukova
Nonlin. Processes Geophys., 25, 497–510, https://doi.org/10.5194/npg-25-497-2018,https://doi.org/10.5194/npg-25-497-2018, 2018

Cited articles

Allan, D. W.: Statistics of atomic frequency standards, P. IEEE, 54, 221–230, 1966.
Barnes, J. A. and Allan, D. W.: A statistical model of flicker noise, P. IEEE, 54, 176–178, 1966.
Bird, P.: An updated digital model of plate boundaries, Geochem. Geophy. Geosy., 4, 1027, https://doi.org/10.1029/2001GC000252, 2003.
Bohnenstiehl, D. R., Tolstoy, M., Smith, D. K., Fox, C. G., and Dziak, R. P.: Time-clustering behavior of spreading-center seismicity between 15 and 35° N on the Mid-Atlantic Ridge: observations from hydroacoustic monitoring, Phys. Earth Planet. In., 138, 147–161, 2001.
Cavers, M. and Vasudevan, K.: An application of Markov Chains in seismology, The Bulletin of the International Linear Algebra Society, 51, 2–7, 2013.
Publications Copernicus
Download
Short summary
We introduced a new modified Markov chain model to generate a time series of the earthquake sequences from a global catalogue with an optimum time sampling of 9 days. Here, we subject the time series to a known analysis method namely an ensemble empirical mode decomposition to study the state-to-state fluctuations in each of the intrinsic mode functions. Also, we establish the power-law behaviour of the time series with the Fano factor and Allan factor used in time-correlative behaviour studies
We introduced a new modified Markov chain model to generate a time series of the earthquake...
Citation