Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.699 IF 1.699
  • IF 5-year value: 1.559 IF 5-year
    1.559
  • CiteScore value: 1.61 CiteScore
    1.61
  • SNIP value: 0.884 SNIP 0.884
  • IPP value: 1.49 IPP 1.49
  • SJR value: 0.648 SJR 0.648
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 52 Scimago H
    index 52
  • h5-index value: 21 h5-index 21
Volume 22, issue 5
Nonlin. Processes Geophys., 22, 601–611, 2015
https://doi.org/10.5194/npg-22-601-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Nonlin. Processes Geophys., 22, 601–611, 2015
https://doi.org/10.5194/npg-22-601-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 09 Oct 2015

Research article | 09 Oct 2015

A framework for variational data assimilation with superparameterization

I. Grooms and Y. Lee
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Ian Grooms on behalf of the Authors (28 May 2015)  Author's response    Manuscript
ED: Reconsider after major revisions (further review by Editor and Referees) (10 Jun 2015) by Zoltan Toth
AR by Ian Grooms on behalf of the Authors (18 Jun 2015)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (06 Jul 2015) by Zoltan Toth
RR by Anonymous Referee #2 (07 Jul 2015)
RR by Anonymous Referee #1 (28 Jul 2015)
ED: Publish subject to minor revisions (further review by Editor) (24 Aug 2015) by Zoltan Toth
AR by Ian Grooms on behalf of the Authors (25 Aug 2015)  Author's response    Manuscript
ED: Publish as is (28 Sep 2015) by Zoltan Toth
Publications Copernicus
Download
Short summary
Superparameterization is a multiscale computational method that significantly improves the representation of cloud processes in global atmosphere and climate models. We present a framework for assimilating observational data into superparameterized models to initialize them for forecasts. The framework is demonstrated in the context of a new system of ordinary differential equations that constitutes perhaps the simplest model of superparameterization.
Superparameterization is a multiscale computational method that significantly improves the...
Citation