Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.699 IF 1.699
  • IF 5-year value: 1.559 IF 5-year
    1.559
  • CiteScore value: 1.61 CiteScore
    1.61
  • SNIP value: 0.884 SNIP 0.884
  • IPP value: 1.49 IPP 1.49
  • SJR value: 0.648 SJR 0.648
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 52 Scimago H
    index 52
  • h5-index value: 21 h5-index 21
Volume 23, issue 2
Nonlin. Processes Geophys., 23, 107–113, 2016
https://doi.org/10.5194/npg-23-107-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Nonlin. Processes Geophys., 23, 107–113, 2016
https://doi.org/10.5194/npg-23-107-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 29 Apr 2016

Research article | 29 Apr 2016

Static behaviour of induced seismicity

Arnaud Mignan Arnaud Mignan
  • Institute of Geophysics, ETH Zurich, Zurich, Switzerland

Abstract. The standard paradigm to describe seismicity induced by fluid injection is to apply non-linear diffusion dynamics in a poroelastic medium. I show that the spatio-temporal behaviour and rate evolution of induced seismicity can, instead, be expressed by geometric operations on a static stress field produced by volume change at depth. I obtain laws similar in form to the ones derived from poroelasticity while requiring a lower description length. Although fluid flow is known to occur in the ground, it is not pertinent to the geometrical description of the spatio-temporal patterns of induced seismicity. The proposed model is equivalent to the static stress model for tectonic foreshocks generated by the Non-Critical Precursory Accelerating Seismicity Theory. This study hence verifies the explanatory power of this theory outside of its original scope and provides an alternative physical approach to poroelasticity for the modelling of induced seismicity. The applicability of the proposed geometrical approach is illustrated for the case of the 2006, Basel enhanced geothermal system stimulation experiment. Applicability to more problematic cases where the stress field may be spatially heterogeneous is also discussed.

Publications Copernicus
Download
Short summary
Induced seismicity is a concern for the industries relying on fluid injection in the deep parts of the Earth’s crust. At the same time, fluid injection sites provide natural laboratories to study the impact of increased fluid pressure on earthquake generation. In this study, I show that simple geometric operations on a static stress field produced by volume change at depth explains two empirical laws of induced seismicity without having recourse to complex models derived from rock mechanics.
Induced seismicity is a concern for the industries relying on fluid injection in the deep parts...
Citation