Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.699 IF 1.699
  • IF 5-year value: 1.559 IF 5-year
    1.559
  • CiteScore value: 1.61 CiteScore
    1.61
  • SNIP value: 0.884 SNIP 0.884
  • IPP value: 1.49 IPP 1.49
  • SJR value: 0.648 SJR 0.648
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 52 Scimago H
    index 52
  • h5-index value: 21 h5-index 21
Volume 23, issue 3
Nonlin. Processes Geophys., 23, 127–136, 2016
https://doi.org/10.5194/npg-23-127-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Nonlin. Processes Geophys., 23, 127–136, 2016
https://doi.org/10.5194/npg-23-127-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 27 May 2016

Research article | 27 May 2016

An improved global zenith tropospheric delay model GZTD2 considering diurnal variations

Yibin Yao et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Yibin Yao on behalf of the Authors (10 May 2016)  Author's response    Manuscript
ED: Publish as is (13 May 2016) by Jose M. Redondo
Publications Copernicus
Download
Short summary
By considering the diurnal variations in zenith tropospheric delay (ZTD) and modifying the model expansion function, we developed an improved global empirical ZTD model GZTD2 with higher temporal and spatial resolutions compared to our previous GZTD model. The external validation testing with IGS ZTD data shows the bias and rms for GZTD2 are −0.3 and 3.9 cm respectively, indicating higher accuracy and reliability for geodesy technology compared to GZTD and other commonly used ZTD models.
By considering the diurnal variations in zenith tropospheric delay (ZTD) and modifying the model...
Citation