Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.699 IF 1.699
  • IF 5-year value: 1.559 IF 5-year
    1.559
  • CiteScore value: 1.61 CiteScore
    1.61
  • SNIP value: 0.884 SNIP 0.884
  • IPP value: 1.49 IPP 1.49
  • SJR value: 0.648 SJR 0.648
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 52 Scimago H
    index 52
  • h5-index value: 21 h5-index 21
Volume 24, issue 1
Nonlin. Processes Geophys., 24, 1–8, 2017
https://doi.org/10.5194/npg-24-1-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Current perspectives in modelling, monitoring, and predicting...

Nonlin. Processes Geophys., 24, 1–8, 2017
https://doi.org/10.5194/npg-24-1-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 12 Jan 2017

Research article | 12 Jan 2017

Parametric resonance in the dynamics of an elliptic vortex in a periodically strained environment

Konstantin V. Koshel and Eugene A. Ryzhov
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Evgeny Ryzhov on behalf of the Authors (02 Dec 2016)  Author's response    Manuscript
ED: Publish as is (21 Dec 2016) by Ana M. Mancho
Publications Copernicus
Download
Short summary
The paper deals with the dynamics of an isolated vortex that evolves in a time-dependent strain environment. We establish parameters leading to parametric instability of stationary steady-state configuration using a combination of analytical and numerical techniques. Our findings may contribute to a deeper understanding of the coherent vortex dynamics in the ocean.
The paper deals with the dynamics of an isolated vortex that evolves in a time-dependent strain...
Citation