Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.699 IF 1.699
  • IF 5-year value: 1.559 IF 5-year
    1.559
  • CiteScore value: 1.61 CiteScore
    1.61
  • SNIP value: 0.884 SNIP 0.884
  • IPP value: 1.49 IPP 1.49
  • SJR value: 0.648 SJR 0.648
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 52 Scimago H
    index 52
  • h5-index value: 21 h5-index 21
Volume 24, issue 2
Nonlin. Processes Geophys., 24, 125–139, 2017
https://doi.org/10.5194/npg-24-125-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Current perspectives in modelling, monitoring, and predicting...

Nonlin. Processes Geophys., 24, 125–139, 2017
https://doi.org/10.5194/npg-24-125-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 06 Mar 2017

Research article | 06 Mar 2017

Insights on the role of accurate state estimation in coupled model parameter estimation by a conceptual climate model study

Xiaolin Yu et al.
Related authors  
Substantial ozone enhancement over the North China Plain from increased biogenic emissions due to heat waves and land cover in summer 2017
Mingchen Ma, Yang Gao, Yuhang Wang, Shaoqing Zhang, L. Ruby Leung, Cheng Liu, Shuxiao Wang, Bin Zhao, Xing Chang, Hang Su, Tianqi Zhang, Lifang Sheng, Xiaohong Yao, and Huiwang Gao
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-362,https://doi.org/10.5194/acp-2019-362, 2019
Revised manuscript accepted for ACP
Short summary
Impact of an observational time window on coupled data assimilation: simulation with a simple climate model
Yuxin Zhao, Xiong Deng, Shaoqing Zhang, Zhengyu Liu, Chang Liu, Gabriel Vecchi, Guijun Han, and Xinrong Wu
Nonlin. Processes Geophys., 24, 681–694, https://doi.org/10.5194/npg-24-681-2017,https://doi.org/10.5194/npg-24-681-2017, 2017
Short summary
Mitigation of coupled model biases induced by dynamical core misfitting through parameter optimization: simulation with a simple pycnocline prediction model
G.-J. Han, X.-F. Zhang, S. Zhang, X.-R. Wu, and Z. Liu
Nonlin. Processes Geophys., 21, 357–366, https://doi.org/10.5194/npg-21-357-2014,https://doi.org/10.5194/npg-21-357-2014, 2014
Related subject area  
Subject: Predictability, Data Assimilation | Topic: Climate, Atmosphere, Ocean, Hydrology, Cryosphere, Biosphere
Joint state-parameter estimation of a nonlinear stochastic energy balance model from sparse noisy data
Fei Lu, Nils Weitzel, and Adam H. Monahan
Nonlin. Processes Geophys., 26, 227–250, https://doi.org/10.5194/npg-26-227-2019,https://doi.org/10.5194/npg-26-227-2019, 2019
Short summary
Non-Gaussian statistics in global atmospheric dynamics: a study with a 10 240-member ensemble Kalman filter using an intermediate atmospheric general circulation model
Keiichi Kondo and Takemasa Miyoshi
Nonlin. Processes Geophys., 26, 211–225, https://doi.org/10.5194/npg-26-211-2019,https://doi.org/10.5194/npg-26-211-2019, 2019
Short summary
Fluctuations of finite-time Lyapunov exponents in an intermediate-complexity atmospheric model: a multivariate and large-deviation perspective
Frank Kwasniok
Nonlin. Processes Geophys., 26, 195–209, https://doi.org/10.5194/npg-26-195-2019,https://doi.org/10.5194/npg-26-195-2019, 2019
Short summary
Data assimilation using adaptive, non-conservative, moving mesh models
Ali Aydoğdu, Alberto Carrassi, Colin T. Guider, Chris K. R. T Jones, and Pierre Rampal
Nonlin. Processes Geophys., 26, 175–193, https://doi.org/10.5194/npg-26-175-2019,https://doi.org/10.5194/npg-26-175-2019, 2019
Short summary
Data assimilation as a learning tool to infer ordinary differential equation representations of dynamical models
Marc Bocquet, Julien Brajard, Alberto Carrassi, and Laurent Bertino
Nonlin. Processes Geophys., 26, 143–162, https://doi.org/10.5194/npg-26-143-2019,https://doi.org/10.5194/npg-26-143-2019, 2019
Short summary
Cited articles  
Anderson, J.: An ensemble adjustment Kalman filter for data assimilation, Mon. Weather Rev., 129, 2884–2903, 2001.
Anderson, J.: A local least squares framework for ensemble filtering, Mon. Weather Rev., 131, 634–642, 2003.
Annan, J. D., Lunt, D. J., Hargreaves, J. C., and Valdes, P. J.: Parameter estimation in an atmospheric GCM using the Ensemble Kalman Filter, Nonlin. Processes Geophys., 12, 363–371, https://doi.org/10.5194/npg-12-363-2005, 2005.
Barth, A., Canter, M., Schaeybroeck, B. V., Vannitsem, S., Massonnet, F., Zunz, V., Mathiot, P., Alvera-Azcarate, A., and Beckers, J.: Assimilation of sea surface temperature, sea ice concentration and sea ice drift in a model of the Southern Ocean, Ocean Modell., 93, 22–39, 2015.
Dee, D. P.: Bias and data assimilation, Q. J. Roy. Meteorol. Soc., 131.613, 3323–3344, 2005.
Publications Copernicus
Download
Short summary
Parameter estimation (PE) with a global coupled data assimilation (CDA) system can improve the runs, but the improvement remains in a limited range. We have to come back to simple models to sort out the sources of noises. Incomplete observations and the chaotic nature of the atmosphere have much stronger influences on the PE through the state estimation (SE) process. Here, we propose the guidelines of how to enhance the signal-to-noise ratio under partial SE status.
Parameter estimation (PE) with a global coupled data assimilation (CDA) system can improve the...
Citation