Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.129 IF 1.129
  • IF 5-year value: 1.519 IF 5-year 1.519
  • CiteScore value: 1.54 CiteScore 1.54
  • SNIP value: 0.798 SNIP 0.798
  • SJR value: 0.610 SJR 0.610
  • IPP value: 1.41 IPP 1.41
  • h5-index value: 21 h5-index 21
  • Scimago H index value: 48 Scimago H index 48
Volume 24, issue 2 | Copyright

Special issue: Current perspectives in modelling, monitoring, and predicting...

Nonlin. Processes Geophys., 24, 227-235, 2017
https://doi.org/10.5194/npg-24-227-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 24 May 2017

Research article | 24 May 2017

Influence of finite-time Lyapunov exponents on winter precipitation over the Iberian Peninsula

Daniel Garaboa-Paz1, Nieves Lorenzo2, and Vicente Pérez-Muñuzuri1 Daniel Garaboa-Paz et al.
  • 1Group of Nonlinear Physics, Faculty of Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
  • 2Ephyslab, Faculty of Sciences, Campus de Ourense, University of Vigo, 32004 Ourense, Spain

Abstract. Seasonal forecasts have improved during the last decades, mostly due to an increase in understanding of the coupled ocean–atmosphere dynamics, and the development of models able to predict the atmosphere variability. Correlations between different teleconnection patterns and severe weather in different parts of the world are constantly evolving and changing. This paper evaluates the connection between winter precipitation over the Iberian Peninsula and the large-scale tropospheric mixing over the eastern Atlantic Ocean. Finite-time Lyapunov exponents (FTLEs) have been calculated from 1979 to 2008 to evaluate this mixing. Our study suggests that significant negative correlations exist between summer FTLE anomalies and winter precipitation over Portugal and Spain. To understand the mechanisms behind this correlation, summer anomalies of the FTLE have also been correlated with other climatic variables such as the sea surface temperature (SST), the sea level pressure (SLP) or the geopotential. The East Atlantic (EA) teleconnection index correlates with the summer FTLE anomalies, confirming their role as a seasonal predictor for winter precipitation over the Iberian Peninsula.

Publications Copernicus
Special issue
Download
Short summary
This paper evaluates the connection between winter precipitation over the Iberian Peninsula and the large-scale tropospheric mixing over the eastern Atlantic Ocean. Finite-time Lyapunov exponents (FTLEs) have been calculated from 1979 to 2008 to evaluate this mixing. Our study suggests that significant negative correlations exist between summer FTLE anomalies and winter precipitation over Portugal and Spain.
This paper evaluates the connection between winter precipitation over the Iberian Peninsula and...
Citation
Share