Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.129 IF 1.129
  • IF 5-year value: 1.519 IF 5-year 1.519
  • CiteScore value: 1.54 CiteScore 1.54
  • SNIP value: 0.798 SNIP 0.798
  • SJR value: 0.610 SJR 0.610
  • IPP value: 1.41 IPP 1.41
  • h5-index value: 21 h5-index 21
  • Scimago H index value: 48 Scimago H index 48
Volume 24, issue 3
Nonlin. Processes Geophys., 24, 535-542, 2017
https://doi.org/10.5194/npg-24-535-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Nonlin. Processes Geophys., 24, 535-542, 2017
https://doi.org/10.5194/npg-24-535-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 05 Sep 2017

Research article | 05 Sep 2017

On the CCN (de)activation nonlinearities

Sylwester Arabas and Shin-ichiro Shima
Viewed  
Total article views: 1,336 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
898 327 111 1,336 153 88 115
  • HTML: 898
  • PDF: 327
  • XML: 111
  • Total: 1,336
  • Supplement: 153
  • BibTeX: 88
  • EndNote: 115
Views and downloads (calculated since 04 Oct 2016)
Cumulative views and downloads (calculated since 04 Oct 2016)
Viewed (geographical distribution)  
Total article views: 1,336 (including HTML, PDF, and XML) Thereof 1,317 with geography defined and 19 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved (final revised paper)  
No saved metrics found.
Saved (discussion paper)  
No saved metrics found.
Discussed (final revised paper)  
Discussed (discussion paper)  
No discussed metrics found.
Latest update: 17 Nov 2018
Publications Copernicus
Download
Short summary
The paper bridges cloud/aerosol modelling with bifurcation analysis. It identifies two nonlinear peculiarities in the differential equations describing formation of atmospheric clouds through vapour condensation on a population of aerosol particles. A key finding of the paper is an analytic estimate for the timescale of the process. The study emerged from discussions on the causes of hysteretic behaviour of the system that we observed in the results of numerical simulations.
The paper bridges cloud/aerosol modelling with bifurcation analysis. It identifies two nonlinear...
Citation
Share