Articles | Volume 24, issue 4
https://doi.org/10.5194/npg-24-661-2017
https://doi.org/10.5194/npg-24-661-2017
Research article
 | 
20 Oct 2017
Research article |  | 20 Oct 2017

Network-based study of Lagrangian transport and mixing

Kathrin Padberg-Gehle and Christiane Schneide

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Rain process models and convergence to point processes
Scott Hottovy and Samuel N. Stechmann
EGUsphere, https://doi.org/10.5194/egusphere-2022-865,https://doi.org/10.5194/egusphere-2022-865, 2022
Short summary
Integrated hydrodynamic and machine learning models for compound flooding prediction in a data-scarce estuarine delta
Joko Sampurno, Valentin Vallaeys, Randy Ardianto, and Emmanuel Hanert
Nonlin. Processes Geophys., 29, 301–315, https://doi.org/10.5194/npg-29-301-2022,https://doi.org/10.5194/npg-29-301-2022, 2022
Short summary
Empirical adaptive wavelet decomposition (EAWD): an adaptive decomposition for the variability analysis of observation time series in atmospheric science
Olivier Delage, Thierry Portafaix, Hassan Bencherif, Alain Bourdier, and Emma Lagracie
Nonlin. Processes Geophys., 29, 265–277, https://doi.org/10.5194/npg-29-265-2022,https://doi.org/10.5194/npg-29-265-2022, 2022
Short summary
Predicting sea surface temperatures with coupled reservoir computers
Benjamin Walleshauser and Erik Bollt
Nonlin. Processes Geophys., 29, 255–264, https://doi.org/10.5194/npg-29-255-2022,https://doi.org/10.5194/npg-29-255-2022, 2022
Short summary
Lévy noise versus Gaussian-noise-induced transitions in the Ghil–Sellers energy balance model
Valerio Lucarini, Larissa Serdukova, and Georgios Margazoglou
Nonlin. Processes Geophys., 29, 183–205, https://doi.org/10.5194/npg-29-183-2022,https://doi.org/10.5194/npg-29-183-2022, 2022
Short summary

Cited articles

Allshouse, M. R. and Peacock, T.: Lagrangian based methods for coherent structure detection, Chaos, 25, 097617, https://doi.org/10.1063/1.4922968, 2015.
Allshouse, M. R. and Thiffeault, J.-L.: Detecting coherent structures using braids, Physica D, 241, 95–105, 2012.
Banisch, R. and Koltai, P.: Understanding the geometry of transport: diffusion maps for Lagrangian trajectory data unravel coherent sets, Chaos, 27, 035804, https://doi.org/10.1063/1.4971788, 2017.
Budišić, M. and Mezić, I.: Geometry of the ergodic quotient reveals coherent structures in flows, Physica D, 241, 1255–1269, 2012.
Dellnitz, M. and Preis, R.: Congestion and Almost Invariant Sets in Dynamical Systems, in: Symbolic and Numerical Scientific Computation (Proceedings of SNSC'01), edited by: Winkler, F., LNCS 2630, Springer, Berlin, Heidelberg, 183–209, 2003.
Download
Short summary
Transport and mixing processes in fluid flows are crucially influenced by coherent structures, such as eddies, gyres, or jets in geophysical flows. We propose a very simple and computationally efficient approach for analyzing coherent behavior in fluid flows. The central object is a flow network constructed directly from particle trajectories. The network's local and spectral properties are shown to give a very good indication of coherent as well as mixing regions in the underlying flow.