Articles | Volume 24, issue 4
https://doi.org/10.5194/npg-24-745-2017
Special issue:
https://doi.org/10.5194/npg-24-745-2017
Research article
 | 
15 Dec 2017
Research article |  | 15 Dec 2017

Satellite drag effects due to uplifted oxygen neutrals during super magnetic storms

Gurbax S. Lakhina and Bruce T. Tsurutani

Related authors

NORAD Tracking of the 2022 February Starlink Satellites and the Immediate Loss of 32 Satellites
Fernando L. Guarnieri, Bruce T. Tsurutani, Rajkumar Hajra, Ezequiel Echer, and Gurbax S. Lakhina
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-9,https://doi.org/10.5194/npg-2024-9, 2024
Preprint under review for NPG
Short summary
The physics of space weather/solar-terrestrial physics (STP): what we know now and what the current and future challenges are
Bruce T. Tsurutani, Gurbax S. Lakhina, and Rajkumar Hajra
Nonlin. Processes Geophys., 27, 75–119, https://doi.org/10.5194/npg-27-75-2020,https://doi.org/10.5194/npg-27-75-2020, 2020
Short summary
Preface: Nonlinear waves and chaos
Gurbax S. Lakhina, Bruce T. Tsurutani, George J. Morales, Annick Pouquet, Masahiro Hoshino, Juan Alejandro Valdivia, Yasuhito Narita, and Roger Grimshaw
Nonlin. Processes Geophys., 25, 477–479, https://doi.org/10.5194/npg-25-477-2018,https://doi.org/10.5194/npg-25-477-2018, 2018
Comment on "Storming the Bastille: the effect of electric fields on the ionospheric F-layer" by Rishbeth et al. (2010)
B. T. Tsurutani, A. J. Mannuccci, O. P. Verkhoglyadova, and G. S. Lakhina
Ann. Geophys., 31, 145–150, https://doi.org/10.5194/angeo-31-145-2013,https://doi.org/10.5194/angeo-31-145-2013, 2013

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Ionosphere, magnetosphere, planetary science, solar science
Quantification of magnetosphere–ionosphere coupling timescales using mutual information: response of terrestrial radio emissions and ionospheric–magnetospheric currents
Alexandra Ruth Fogg, Caitríona M. Jackman, Sandra C. Chapman, James E. Waters, Aisling Bergin, Laurent Lamy, Karine Issautier, Baptiste Cecconi, and Xavier Bonnin
Nonlin. Processes Geophys., 31, 195–206, https://doi.org/10.5194/npg-31-195-2024,https://doi.org/10.5194/npg-31-195-2024, 2024
Short summary
Nonlinear vortex solution for perturbations in the Earth's ionosphere
Miroslava Vukcevic and Luka Č. Popović
Nonlin. Processes Geophys., 27, 295–306, https://doi.org/10.5194/npg-27-295-2020,https://doi.org/10.5194/npg-27-295-2020, 2020
Short summary
The physics of space weather/solar-terrestrial physics (STP): what we know now and what the current and future challenges are
Bruce T. Tsurutani, Gurbax S. Lakhina, and Rajkumar Hajra
Nonlin. Processes Geophys., 27, 75–119, https://doi.org/10.5194/npg-27-75-2020,https://doi.org/10.5194/npg-27-75-2020, 2020
Short summary
Complex network description of the ionosphere
Shikun Lu, Hao Zhang, Xihai Li, Yihong Li, Chao Niu, Xiaoyun Yang, and Daizhi Liu
Nonlin. Processes Geophys., 25, 233–240, https://doi.org/10.5194/npg-25-233-2018,https://doi.org/10.5194/npg-25-233-2018, 2018
Evolution of fractality in space plasmas of interest to geomagnetic activity
Víctor Muñoz, Macarena Domínguez, Juan Alejandro Valdivia, Simon Good, Giuseppina Nigro, and Vincenzo Carbone
Nonlin. Processes Geophys., 25, 207–216, https://doi.org/10.5194/npg-25-207-2018,https://doi.org/10.5194/npg-25-207-2018, 2018
Short summary

Cited articles

Appleton, E. V.: Two anomalies in the ionosphere, Nature, 157, 691 https://doi.org/10.1038/157691a0, 1946.
Bailey, G. J. and Balan, N.: A low-latitude ionosphere-plasmasphere model, in: STEP: Handbook of Ionospheric Models, edited by: Schunk, R. W., Utah State Univ., Logan, Utah, p. 173, 1996.
Baron, M. J. and Wand, R. H.: F region ion temperature enhancements resulting from Joule heating, J. Geophys. Res., 88, 4114–4118, 1983.
Basu, S., Basu, S., Groves, K. M., Yeh, H.-C., Su, S.-Y., Rich, F. J., Sultan, P. J., and Keskinen, M. J.: Response of the equatorial ionosphere in the south Atlantic region to the great magnetic Storm of July 15, 2000, Geophys. Res. Lett., 28, 3577–3580, 2001.
Basu, S., Basu, S., Rich, F. J., Groves, K. M., MacKenzie, E., Coker, C., Sahai, Y., Fagundes, P. R., and Becker-Guedes, F.: Response of the equatorial ionosphere at dusk to penetration electric fields during intense magnetic storms, J. Geophys. Res., 112, A08308, https://doi.org/10.1029/2006JA012192, 2007.
Download
Short summary
A preliminary estimate of the drag force per unit mass on typical low-Earth-orbiting satellites moving through the ionosphere during Carrington-type super magnetic storms is calculated by a simple first-order model which takes into account the ion-neutral drag between the upward-moving oxygen ions and O neutral atoms. It is shown that oxygen ions and atoms can be uplifted to 850 km altitude, where they produce about 40 times more satellite drag per unit mass than normal.