Journal metrics

Journal metrics

  • IF value: 1.129 IF 1.129
  • IF 5-year value: 1.519 IF 5-year 1.519
  • CiteScore value: 1.54 CiteScore 1.54
  • SNIP value: 0.798 SNIP 0.798
  • SJR value: 0.610 SJR 0.610
  • IPP value: 1.41 IPP 1.41
  • h5-index value: 21 h5-index 21
  • Scimago H index value: 48 Scimago H index 48
Nonlin. Processes Geophys., 24, 745-750, 2017
https://doi.org/10.5194/npg-24-745-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.
Research article
15 Dec 2017
Satellite drag effects due to uplifted oxygen neutrals during super magnetic storms
Gurbax S. Lakhina1 and Bruce T. Tsurutani2 1Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai, India
2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Abstract. During intense magnetic storms, prompt penetration electric fields (PPEFs) through E  ×  B forces near the magnetic equator uplift the dayside ionosphere. This effect has been called the dayside super-fountain effect. Ion-neutral drag forces between the upward moving O+ (oxygen ions) and oxygen neutrals will elevate the oxygen atoms to higher altitudes. This paper gives a linear calculation indicating how serious the effect may be during an 1859-type (Carrington) superstorm. It is concluded that the oxygen neutral densities produced at low-Earth-orbiting (LEO) satellite altitudes may be sufficiently high to present severe satellite drag. It is estimated that with a prompt penetrating electric field of ∼ 20 mV m−1 turned on for 20 min, the O atoms and O+ ions are uplifted to 850 km where they produce about 40-times-greater satellite drag per unit mass than normal. Stronger electric fields will presumably lead to greater uplifted mass.

Citation: Lakhina, G. S. and Tsurutani, B. T.: Satellite drag effects due to uplifted oxygen neutrals during super magnetic storms, Nonlin. Processes Geophys., 24, 745-750, https://doi.org/10.5194/npg-24-745-2017, 2017.
Publications Copernicus
Download
Short summary
A preliminary estimate of the drag force per unit mass on typical low-Earth-orbiting satellites moving through the ionosphere during Carrington-type super magnetic storms is calculated by a simple first-order model which takes into account the ion-neutral drag between the upward-moving oxygen ions and O neutral atoms. It is shown that oxygen ions and atoms can be uplifted to 850 km altitude, where they produce about 40 times more satellite drag per unit mass than normal.
A preliminary estimate of the drag force per unit mass on typical low-Earth-orbiting satellites...
Share