Articles | Volume 25, issue 1
https://doi.org/10.5194/npg-25-207-2018
Special issue:
https://doi.org/10.5194/npg-25-207-2018
Review article
 | 
12 Mar 2018
Review article |  | 12 Mar 2018

Evolution of fractality in space plasmas of interest to geomagnetic activity

Víctor Muñoz, Macarena Domínguez, Juan Alejandro Valdivia, Simon Good, Giuseppina Nigro, and Vincenzo Carbone

Related authors

Large-amplitude electromagnetic waves in magnetized relativistic plasmas with temperature
V. Muñoz, F. A. Asenjo, M. Domínguez, R. A. López, J. A. Valdivia, A. Viñas, and T. Hada
Nonlin. Processes Geophys., 21, 217–236, https://doi.org/10.5194/npg-21-217-2014,https://doi.org/10.5194/npg-21-217-2014, 2014

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Ionosphere, magnetosphere, planetary science, solar science
Quantification of Magnetosphere – Ionosphere coupling timescales using mutual information: response of terrestrial radio emissions and ionospheric/magnetospheric currents
Alexandra Ruth Fogg, Caitriona M. Jackman, Sandra C. Chapman, James E. Waters, Aisling Bergin, Laurent Lamy, Karine Issautier, Baptiste Cecconi, and Xavier Bonnin
EGUsphere, https://doi.org/10.5194/egusphere-2023-2055,https://doi.org/10.5194/egusphere-2023-2055, 2023
Short summary
Nonlinear vortex solution for perturbations in the Earth's ionosphere
Miroslava Vukcevic and Luka Č. Popović
Nonlin. Processes Geophys., 27, 295–306, https://doi.org/10.5194/npg-27-295-2020,https://doi.org/10.5194/npg-27-295-2020, 2020
Short summary
The physics of space weather/solar-terrestrial physics (STP): what we know now and what the current and future challenges are
Bruce T. Tsurutani, Gurbax S. Lakhina, and Rajkumar Hajra
Nonlin. Processes Geophys., 27, 75–119, https://doi.org/10.5194/npg-27-75-2020,https://doi.org/10.5194/npg-27-75-2020, 2020
Short summary
Complex network description of the ionosphere
Shikun Lu, Hao Zhang, Xihai Li, Yihong Li, Chao Niu, Xiaoyun Yang, and Daizhi Liu
Nonlin. Processes Geophys., 25, 233–240, https://doi.org/10.5194/npg-25-233-2018,https://doi.org/10.5194/npg-25-233-2018, 2018
Satellite drag effects due to uplifted oxygen neutrals during super magnetic storms
Gurbax S. Lakhina and Bruce T. Tsurutani
Nonlin. Processes Geophys., 24, 745–750, https://doi.org/10.5194/npg-24-745-2017,https://doi.org/10.5194/npg-24-745-2017, 2017
Short summary

Cited articles

ACE Science Center: ACE data, Caltech, available at: http://www.srl.caltech.edu/ACE/ASC/index.html, last access: 6 March 2018. a
Addison, P. S.: Fractals and Chaos, an Illustrated Course, vol. 1, 2 edn., Institute of Physics Publishing, Bristol, UK and Philadelphia, USA, 1997. a, b, c
Aschwanden, M. J. and Aschwanden, P. D.: Solar Flare Geometries. I. The Area Fractal Dimension, Astrophys. J., 674, 530–543, 2008. a
Balasis, G., Daglis, I. A., Kapiris, P., Mandea, M., Vassiliadis, D., and Eftaxias, K.: From pre-storm activity to magnetic storms: a transition described in terms of fractal dynamics, Ann. Geophys., 24, 3557–3567, https://doi.org/10.5194/angeo-24-3557-2006, 2006. a
Balasis, G., Daglis, I. A., Papadimitriou, C., Kalimeri, M., Anastasiadis, A., and Eftaxias, K.: Investigating Dynamical Complexity in the Magnetosphere using Various Entropy Measures, J. Geophys. Res., 114, A00D06, https://doi.org/10.1029/2008JA014035, 2009. a, b
Download
Short summary
Fractals are self-similar objects (which look the same at all scales), whose dimensions can be noninteger. They are mathematical concepts, useful to describe various physical systems, as the fractal dimension is a measure of their complexity. In this paper we study how these concepts can be applied to some problems in space plasmas, such as the activity of the Earth's magnetosphere, simulations of plasma turbulence, or identification of magnetic structures ejected from the Sun.