Articles | Volume 25, issue 2
https://doi.org/10.5194/npg-25-429-2018
https://doi.org/10.5194/npg-25-429-2018
Research article
 | 
21 Jun 2018
Research article |  | 21 Jun 2018

Sensitivity analysis with respect to observations in variational data assimilation for parameter estimation

Victor Shutyaev, Francois-Xavier Le Dimet, and Eugene Parmuzin

Related authors

Toward the assimilation of images
F.-X. Le Dimet, I. Souopgui, O. Titaud, V. Shutyaev, and M. Y. Hussaini
Nonlin. Processes Geophys., 22, 15–32, https://doi.org/10.5194/npg-22-15-2015,https://doi.org/10.5194/npg-22-15-2015, 2015

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
A range of outcomes: the combined effects of internal variability and anthropogenic forcing on regional climate trends over Europe
Clara Deser and Adam S. Phillips
Nonlin. Processes Geophys., 30, 63–84, https://doi.org/10.5194/npg-30-63-2023,https://doi.org/10.5194/npg-30-63-2023, 2023
Short summary
Extending ensemble Kalman filter algorithms to assimilate observations with an unknown time offset
Elia Gorokhovsky and Jeffrey L. Anderson
Nonlin. Processes Geophys., 30, 37–47, https://doi.org/10.5194/npg-30-37-2023,https://doi.org/10.5194/npg-30-37-2023, 2023
Short summary
Guidance on how to improve vertical covariance localization based on a 1000-member ensemble
Tobias Necker, David Hinger, Philipp Johannes Griewank, Takemasa Miyoshi, and Martin Weissmann
Nonlin. Processes Geophys., 30, 13–29, https://doi.org/10.5194/npg-30-13-2023,https://doi.org/10.5194/npg-30-13-2023, 2023
Short summary
Weather pattern dynamics over western Europe under climate change: predictability, information entropy and production
Stéphane Vannitsem
Nonlin. Processes Geophys., 30, 1–12, https://doi.org/10.5194/npg-30-1-2023,https://doi.org/10.5194/npg-30-1-2023, 2023
Short summary
Using a hybrid optimal interpolation–ensemble Kalman filter for the Canadian Precipitation Analysis
Dikraa Khedhaouiria, Stéphane Bélair, Vincent Fortin, Guy Roy, and Franck Lespinas
Nonlin. Processes Geophys., 29, 329–344, https://doi.org/10.5194/npg-29-329-2022,https://doi.org/10.5194/npg-29-329-2022, 2022
Short summary

Cited articles

Agoshkov, V. I., Parmuzin, E. I., and Shutyaev, V. P.: Numerical algorithm of variational assimilation of the ocean surface temperature data, Comp. Math. Math. Phys., 48, 1371–1391, 2008. a, b, c, d, e, f
Agoshkov, V. I., Parmuzin, E. I., Zalesny, V. B., Shutyaev, V. P., Zakharova, N. B., and Gusev, A. V.: Variational assimilation of observation data in the mathematical model of the Baltic Sea dynamics, Russ. J. Numer. Anal. Math. Modelling, 30, 203–212, 2015. a
Agoshkov, V. I. and Sheloput, T. O.: The study and numerical solution of some inverse problems in simulation of hydrophysical fields in water areas with “liquid” boundaries, Russ. J. Numer. Anal. Math. Modelling, 32, 147–164, 2017. a
Alifanov, O. M., Artyukhin, E. A., and Rumyantsev, S. V.: Extreme Methods for Solving Ill-posed Problems with Applications to Inverse Heat Transfer Problems, Begell House Publishers, Danbury, USA, 1996. a
Baker, N. L. and Daley, R.: Observation and background adjoint sensitivity in the adaptive observation-targeting problem, Q. J. Roy. Meteorol. Soc., 126, 1431–1454, 2000. a
Download
Short summary
The problem of variational data assimilation for a nonlinear evolution model is formulated as an optimal control problem to find unknown parameters of the model. The observation data, and hence the optimal solution, may contain uncertainties. A response function is considered as a functional of the optimal solution after assimilation. The sensitivity of the response function to the observation data is studied. The results are relevant for monitoring and prediction of sea and ocean states.