Journal metrics

Journal metrics

  • IF value: 1.129 IF 1.129
  • IF 5-year value: 1.519 IF 5-year 1.519
  • CiteScore value: 1.54 CiteScore 1.54
  • SNIP value: 0.798 SNIP 0.798
  • SJR value: 0.610 SJR 0.610
  • IPP value: 1.41 IPP 1.41
  • h5-index value: 21 h5-index 21
  • Scimago H index value: 48 Scimago H index 48
Volume 25, issue 3 | Copyright
Nonlin. Processes Geophys., 25, 521-535, 2018
https://doi.org/10.5194/npg-25-521-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 27 Jul 2018

Research article | 27 Jul 2018

Laboratory and numerical experiments on stem waves due to monochromatic waves along a vertical wall

Sung Bum Yoon1, Jong-In Lee2, Young-Take Kim3, and Choong Hun Shin1 Sung Bum Yoon et al.
  • 1Department of Civil and Environmental Engineering, Hanyang University, EIRCA Campus, Ansan, Gyeonggi, 15588, South Korea
  • 2Department of Marine and Civil Engineering, Chonnam National University, Yeosu Campus, Yeosu, Jeonnam, 59626, South Korea
  • 3River and Coastal Research Division, Korea Institute of Civil Engineering & Building Technology, Goyang, Gyeonggi, 10223, South Korea

Abstract. In this study, both laboratory and numerical experiments are conducted to investigate stem waves propagating along a vertical wall developed by the incidence of monochromatic waves. The results show the following features: for small-amplitude waves, the wave heights along the wall show a slowly varying undulation. Normalized wave heights perpendicular to the wall show a standing wave pattern. The overall wave pattern in the case of small-amplitude waves shows a typical diffraction pattern around a semi-infinite thin breakwater. As the amplitude of incident waves increases, both the undulation intensity and the asymptotic normalized wave height decrease along the wall. For larger-amplitude waves with smaller angle of incidence, the measured data clearly show stem waves. Numerical simulation results are in good agreement with the results of laboratory experiments. The results of present experiments favorably support the existence and the properties of stem waves found by other researchers using numerical simulations. The characteristics of the stem waves generated by the incidence of monochromatic Stokes waves are compared with those of the Mach stem of solitary waves.

Download & links
Publications Copernicus
Download
Short summary
Laboratory and numerical experiments are conducted to investigate stem waves due to incidence of monochromatic waves. For larger-amplitude waves with smaller angle of incidence, the measured data clearly show stem waves. The resonant interactions between the incident and reflected waves predicted for solitary waves are not observed for the periodic Stokes waves. The existence and the properties of stem waves found theoretically via simulations are favorably supported by the physical experiments.
Laboratory and numerical experiments are conducted to investigate stem waves due to incidence of...
Citation
Share